Citrus hystrix (CH) is a beneficial plant utilized in traditional folk medicine to relieve various health ailments. The antisenescent mechanisms of CH extracts were investigated using human neuroblastoma cells (SH-SY5Y). Phytochemical contents and antioxidant activities of CH extracts were analyzed using a gas chromatograph–mass spectrometer (GC-MS), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) assay. Effects of CH extracts on high glucose-induced cytotoxicity, reactive oxygen species (ROS) generation, cell cycle arrest and cell cycle-associated proteins were assessed using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, non-fluorescent 2′, 7′-dichloro-dihydrofluorescein diacetate (H2DCFDA) assay, flow cytometer and Western blot. The extracts protected neuronal senescence by inhibiting ROS generation. CH extracts induced cell cycle progression by releasing senescent cells from the G1 phase arrest. As the Western blot confirmed, the mechanism involved in cell cycle progression was associated with the downregulation of cyclin D1, phospho-cell division cycle 2 (pcdc2) and phospho-Retinoblastoma (pRb) proteins. Furthermore, the Western blot showed that extracts increased Surtuin 1 (SIRT1) expression by increasing the phosphorylation of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Collectively, CH extracts could protect high glucose-induced human neuronal senescence by inducing cell cycle progression and up-regulation of SIRT1, thus leading to the improvement of the neuronal cell functions.
Despite the Tiger Milk Mushroom Lignosus rhinocerus (LR) having been used as a traditional medicine, little is known about the neuroprotective effects of LR extracts. This study aims to investigate the neuroprotective effect of three extracts of LR against glutamate-induced oxidative stress in mouse hippocampal (HT22) cells as well as to determine their effect in Caenorhabditis elegans. In vitro, we assessed the toxicity of three LR extracts (ethanol extract (LRE), cold-water extract (LRC) and hot-water extract (LRH)) and their protective activity by MTT assay, Annexin V-FITC/propidium iodide staining, Mitochondrial Membrane Potential (MMP) and intracellular ROS accumulation. Furthermore, we determined the expression of antioxidant genes (catalase (CAT), superoxide dismutase (SOD1 and SOD2) and glutathione peroxidase (GPx)) by qRT-PCR. In vivo, we investigated the neuroprotective effect of LRE, not only against an Aβ-induced deficit in chemotaxis behavior (Alzheimer model) but also against PolyQ40 formation (model for Morbus Huntington) in transgenic C. elegans. Only LRE significantly reduced both apoptosis and intracellular ROS levels and significantly increased the expression of antioxidant genes after glutamate-induced oxidative stress in HT22 cells. In addition, LRE significantly improved the Chemotaxis Index (CI) in C. elegans and significantly decreased PolyQ40 aggregation. Altogether, the LRE exhibited neuroprotective properties both in vitro and in vivo.
Hyperglycemia is one of the important causes of neurodegenerative disorders and aging. Aquilaria crassna Pierre ex Lec (AC) has been widely used to relieve various health ailments. However, the neuroprotective and anti-aging effects against high glucose induction have not been investigated. This study aimed to investigate the effects of hexane extract of AC leaves (ACH) in vitro using human neuroblastoma SH-SY5Y cells and in vivo using nematode Caenorhabditis elegans. SH-SY5Y cells and C. elegans were pre-exposed with high glucose, followed by ACH treatment. To investigate neuroprotective activities, neurite outgrowth and cell cycle progression were determined in SH-SY5Y cells. In addition, C. elegans was used to determine ACH effects on antioxidant activity, longevity, and healthspan. In addition, ACH phytochemicals were analyzed and the possible active compounds were identified using a molecular docking study. ACH exerted neuroprotective effects by inducing neurite outgrowth via upregulating growth-associated protein 43 and teneurin-4 expression and normalizing cell cycle progression through the regulation of cyclin D1 and SIRT1 expression. Furthermore, ACH prolonged lifespan, improved body size, body length, and brood size, and reduced intracellular ROS accumulation in high glucose-induced C. elegans via the activation of gene expression in the DAF-16/FoxO pathway. Finally, phytochemicals of ACH were analyzed and revealed that β-sitosterol and stigmasterol were the possible active constituents in inhibiting insulin-like growth factor 1 receptor (IGFR). The results of this study establish ACH as an alternative medicine to defend against high glucose effects on neurotoxicity and aging.
Polycyclic aromatic hydrocarbons (PAHs) have been recognized to cause neurobehavioral dysfunctions and disorder of cognition and behavioral patterns in childhood. Momordica charantia L. (MC) has been widely known for its nutraceutical and health-promoting properties. To date, the effect of MC for the prevention and handling of PAHs-induced neurotoxicity has not been reported. In the current study, the neuroprotective effects of MC and its underlying mechanisms were investigated in mouse hippocampal neuronal cell line (HT22); moreover, in silico analysis was performed with the phytochemicals MC to decipher their potential function as neuroprotectants. MC was demonstrated to possess neuroprotective effect by reducing reactive oxygen species’ (ROS’) production and down-regulating cyclin D1, p53, and p38 mitogen-activated protein kinase (MAPK) protein expressions, resulting in the inhibition of cell apoptosis and the normalization of cell cycle progression. Additionally, 28 phytochemicals of MC and their competence on inhibiting cytochrome P450 (CYP: CYP1A1, CYP1A2, and CYP1B1) functions were resolved. In silico analysis of vitamin E and stigmasterol revealed that their binding to either CYP1A1 or CYP1A2 was more efficient than the binding of each positive control (alizarin or purpurin). Together, MC is potentially an interesting neuroprotectant including vitamin E and stigmasterol as probable active components for the prevention for PAHs-induced neurotoxicity.
ABSTRACT. Several lines of evidence suggest that the dopaminergic system is involved in the pathophysiology of major depressive disorder (MDD). Since the dopamine transporter (DAT1, also known as SLC6A3), mediates the active reuptake of dopamine from the synapses and thereby plays a vital role in the regulation of dopaminergic neurotransmission, we looked for a possible association between the C/T single nucleotide polymorphism in intron 14 of the DAT1 gene (also referred to as rs40184) and MDD in a northeastern Thai population. One hundred and seventyeight patients with MDD and 205 unrelated healthy controls were included in our study. Genotyping was performed using our newly established polymerase chain reaction-restriction fragment length polymorphism technique. We found no significant differences in genotype distributions, allele frequencies and allele carrier frequencies when comparing the two groups. Although not significant, we observed more carriers of the C allele (CC+CT genotypes) in healthy controls than in patients with MDD (χ 2 = 3.20, degrees of freedom = 1, P = 0.073, odds ratio = 0.53 [95% confidence interval = 0.28-1.01]). We also detected significant differences in the allele frequencies of rs40184 between healthy subjects of Asian ancestry and those of both Caucasian and African ancestry. We concluded that there is a tendency towards an association between the homozygous TT genotype of the rs40184 single nucleotide polymorphism and an increased risk for MDD in this northeastern Thai population. Possibly, with more samples, this tendency will be confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.