Plasmodium vivax is now the predominant species causing malarial infection and disease in most non-African areas, but little is known about its transmission efficiency from human to mosquitoes. Because the majority of Plasmodium infections in endemic areas are low density and asymptomatic, it is important to evaluate how well these infections transmit. Using membrane feeding apparatus, we fed Anopheles dirus with blood samples from 94 individuals who had natural P. vivax infection with parasitemias spanning four orders of magnitude. We found that the mosquito infection rate is positively correlated with blood parasitemia and that infection begins to rise when parasitemia is >10 parasites/μl. Below this threshold, mosquito infection is rare and associated with very few oocysts. These findings provide useful information for assessing the human reservoir of transmission and for establishing diagnostic sensitivity required to identify individuals who are most infective to mosquitoes.
Abstract. Microscopy of Giemsa-stained thick and thin films by a skilled microscopist has remained the standard laboratory method for the diagnosis of malaria. However, diagnosis of malaria with this method is problematic since interpretation of results requires considerable expertise, particularly at low parasite levels. We compared the efficacy of "field" and "expert laboratory" microscopy for active surveillance of Plasmodium falciparum and P. vivax in western Thailand. Field microscopy consisted of an approximately five-minute read (50−100 fields) of a thick film at ×700 using a natural light source, whereas expert laboratory microscopy consisted of a 20-minute read (number of parasites per 500 leukocytes) at ×1,000 using a high-quality, well-maintained microscope with an artificial light source. All discordant and 20% of concordant results were cross-checked blindly. A total of 3,004 blood films collected between May and November 2000 were included in the study, of which 156 (5.2%) were positive for P. falciparum, 177 (5.9%) for P. vivax, and 4 (0.1%) for both P. falciparum and P. vivax by expert microscopy. A total of 84.4% (135 of 160) of the P. falciparumpositive slides and 93.9% of the P. vivax-positive slides had a parasitemia of less than 500/L. Field microscopy was specific (99.3%) but not sensitive (10.0%) for the diagnosis of P. falciparum malaria, with a positive predictive value (PPV) of 43.2% and a negative predictive value (NPV) of 95.1%. The corresponding specificity and sensitivity for the diagnosis of P. vivax malaria were 99.2% and 7.1%, respectively, with a PPV of 38.7% and an NPV of 93.9%. Field microscopy, as defined in this study, is not an effective method for active malaria surveillance in western Thailand, where prevalence and parasitemia rates are low.
IFN-γ is a major regulator of immune functions and has been shown to induce liver-stage Plasmodium elimination both in vitro and in vivo. The molecular mechanism responsible for the restriction of liver-stage Plasmodium downstream of IFN-γ remains uncertain, however. Autophagy, a newly described immune defense mechanism, was recently identified as a downstream pathway activated in response to IFN-γ in the control of intracellular infections. We thus hypothesized that the killing of liver-stage malarial parasites by IFN-γ involves autophagy induction. Our results show that whereas IFN-γ treatment of human hepatocytes activates autophagy, the IFN-γ-mediated restriction of liver-stage Plasmodium vivax depends only on the downstream autophagy-related proteins Beclin 1, PI3K, and ATG5, but not on the upstream autophagy-initiating protein ULK1. In addition, IFN-γ enhanced the recruitment of LC3 onto the parasitophorous vacuole membrane (PVM) and increased the colocalization of lysosomal vesicles with P. vivax compartments. Taken together, these data indicate that IFN-γ mediates the control of liver-stage P. vivax by inducing a noncanonical autophagy pathway resembling that of LC3-associated phagocytosis, in which direct decoration of the PVM with LC3 promotes the fusion of P. vivax compartments with lysosomes and subsequent killing of the pathogen. Understanding the hepatocyte response to IFN-γ during Plasmodium infection and the roles of autophagy-related proteins may provide an urgently needed alternative strategy for the elimination of this human malaria.autophagy | LC3-associated phagocytosis | IFN-γ | malaria S everal hundred million cases of human malaria are reported annually, and nearly 600,000 people die from the disease each year (1). Of the five species that infect humans, Plasmodium vivax is not only the most geographically widespread, but also the most prevalent malarial parasite in areas outside Africa. As such, it has caused massive morbidity in these regions of the world. Although malaria caused by P. vivax was previously regarded as benign compared with that caused by Plasmodium falciparum, the recent alarming increase in both the severity and the drug resistance of P. vivax infection has raised concern (2).The widespread distribution of P. vivax has been attributed to the parasite's ability to remain dormant in the liver for years before reactivation (3). The molecular mechanism responsible for P. vivax dormancy is unknown, and knowledge of Plasmodiumhepatocyte interactions remains very limited. Nonetheless, because the number of liver-stage parasites is in the range of 100, whereas in the blood stage as many as 10 13 organisms may be found (4), intervention at the liver stage would seem to offer a better strategy for parasite elimination. A prerequisite to this route of malaria control and the development of novel therapies is a better understanding of liver-stage Plasmodium and its interactions with host hepatocytes. IFN-γ was previously shown to exhibit antimalarial activity against the liver stag...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.