Updated and revised versions of COVID-19 vaccines are vital due to genetic variations of the SARS-CoV-2 spike antigen. Furthermore, vaccines that are safe, cost-effective, and logistic-friendly are critically needed for global equity, especially for middle- to low-income countries. Recombinant protein-based subunit vaccines against SARS-CoV-2 have been reported using the receptor-binding domain (RBD) and the prefusion spike trimers (S-2P). Recently, a new version of prefusion spike trimers, named HexaPro, has been shown to possess two RBD in the “up” conformation, due to its physical property, as opposed to just one exposed RBD found in S-2P. Importantly, this HexaPro spike antigen is more stable than S-2P, raising its feasibility for global logistics and supply chain. Here, we report that the spike protein HexaPro offers a promising candidate for the SARS-CoV-2 vaccine. Mice immunized by the recombinant HexaPro adjuvanted with aluminum hydroxide using a prime-boost regimen produced high-titer neutralizing antibodies for up to 56 days after initial immunization against live SARS-CoV-2 infection. Also, the level of neutralization activity is comparable to that of convalescence sera. Our results indicate that the HexaPro subunit vaccine confers neutralization activity in sera collected from mice receiving the prime-boost regimen.
Updated and revised versions of COVID-19 vaccines are vital due to genetic variations of the SARS-CoV-2 spike antigen. Furthermore, vaccines that are safe, cost-effective, and logistically friendly are critically needed for global equity, especially for middle to low income countries. Recombinant protein-based subunit vaccines against SARS-CoV-2 have been reported with the use of the receptor binding domain (RBD) and the prefusion spike trimers (S-2P). Recently, a new version of prefusion spike trimers, so called “HexaPro”, has been shown for its physical property to possess two RBD in the “up” conformation, as opposed to just one exposed RBD found in S-2P. Importantly, this HexaPro spike antigen is more stable than S-2P, raising its feasibility for global logistics and supply chain. Here, we report that the spike protein HexaPro offers a promising candidate for SARS-CoV-2 vaccine. Mice immunized by the recombinant HexaPro adjuvanted with aluminium hydroxide using a prime-boost regimen produced high-titer neutralizing antibodies for up to 56 days after initial immunization against live SARS-CoV-2 infection. In addition, the level of neutralization activity is comparable to that of convalescence sera. Our results indicate that the HexaPro subunit vaccine confers neutralization activity in sera collected from mice receiving the prime-boost regimen.
Next-generation COVID-19 vaccines are critical due to the ongoing evolution of SARS-CoV-2 virus. The mRNA vaccines mRNA-1273 and BNT162b2 were developed using linear transcripts encoding the prefusion-stabilized trimers (S-2P) of the wildtype spike, which have shown a reduced neutralizing activity against the variants of concern B.1.617.2 and B.1.1.529. Recently, a new version of spike trimers namely VFLIP has been suggested to possess native-like glycosylation, as opposed to S-2P. Here, we report that the spike protein VFLIP-X, containing six rationally substituted amino acids (K417N, L452R, T478K, E484K, N501Y and D614G), offers a promising candidate for a next-generation SARS-CoV-2 vaccine. Mice immunized by a circular mRNA (circRNA) vaccine prototype producing VFLIP-X elicited neutralizing antibodies for up to 7 weeks post-boost against SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs). In addition, a balance in TH1 and TH2 responses was achieved by the immunization with VFLIP-X. Our results indicate that the VFLIP-X delivered by circRNA confers humoral and cellular immune responses, as well as neutralizing activity against broad SARS-CoV-2 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.