A family of 28 mononuclear Ru(II) complexes have been prepared and characterized by (1)H NMR, electronic absorption, and cyclic voltammetry. These complexes are studied as catalysts for water oxidation. All the catalysts possess one tridentate ligand, closely related to 2,2';6,2''-terpyridine (tpy) and may be divided into two basic types. In the type-1 catalyst, the three remaining coordination sites are occupied by a bidentate closely related to 2,2'-bipyridine (bpy) and a monodentate halogen (Br, Cl, or I) or water molecule. In the type-2 catalyst, the three remaining coordination sites are occupied by two axial 4-picoline molecules and an equatorial halogen or water. In general the type-2 catalysts are more reactive than the type-1. The type-2 iodo-catalyst shows first-order behavior and, unlike the bromo- and chloro-catalysts, does not require water-halogen exchange to show good activity. The importance of steric strain and hindrance around the metal center is examined. The introduction of three t-butyl groups at the 4, 4', and 4'' positions of tpy sometimes improves catalyst activity, but the effect does not appear to be additive.
Two mononuclear Ru(II) complexes, [Ru(ttbt)(pynap)(I)]I and [Ru(tpy)(Mepy)(2)(I)]I (tpy = 2,2';6,2"-terpyridine; ttbt = 4,4',4"-tri-tert-butyltpy; pynap = 2-(pyrid-2'-yl)-1,8-naphthyridine; and Mepy = 4-methylpyridine), are effective catalysts for the oxidation of water. This oxidation can be driven by a blue (λ(max) = 472 nm) LED light source using [Ru(bpy)(3)]Cl(2) (bpy = 2,2'-bipyridine) as the photosensitizer. Sodium persulfate acts as a sacrificial electron acceptor to oxidize the photosensitizer that in turn drives the catalysis. The presence of all four components, light, photosensitizer, sodium persulfate, and catalyst, are required for water oxidation. A dyad assembly has been prepared using a pyrazine-based linker to join a photosensitizer and catalyst moiety. Irradiation of this intramolecular system with blue light produces oxygen with a higher turnover number than the analogous intermolecular component system under the same conditions.
The complexation of 2,9-dicarboxy-1,10-phenanthroline (DPA) with [Ru(tpy)Cl3] (tpy = 2,2';6,2″-terpyridine) provides a six-coordinate species in which one carboxyl group of DPA is not bound to the Ru(II) center. A more soluble tri-t-butyl tpy analogue is also prepared. Upon oxidation, neither species shows evidence for intramolecular trapping of a seven-coordinate intermediate. The role of the tpy ligand is revealed by the preparation of [Ru(tpy)(phenq)](2+) (phenq = 2-(quinol-8'-yl)-1,10-phenanthroline) that behaves as an active water oxidation catalyst (TON = 334). This activity is explained by the expanded coordination geometry of the phenq ligand that can form a six-membered chelate ring that better accommodates the linear arrangement of axial ligands required for optimal pentagonal bipyramid geometry. When a 1,8-naphthyidine ring is substituted for each of the two peripheral pyridine rings on tpy, increased crowding in the vicinity of the metal center impedes acquisition of the prerequisite reaction geometry.
A series of Ru(II) complexes that behave as water oxidation catalysts were prepared involving a tetradentate equatorial ligand and two 4-substituted pyridines as the axial ligands. Two of these complexes were derived from 2,9-di-(pyrid-2'-yl)-1,10-phenanthroline (dpp) and examine the effect of incorporating electron-donating amino and bulky t-butyl groups on catalytic activity. A third complex replaced the two distal pyridines with N-methylimidazoles that are more electron-donating than the pyridines of dpp and potentially stabilize higher oxidation states of the metal. The tetradentate ligand 2-(pyrid-2'-yl)-6-(1'',10''-phenanthrol-2''-yl)pyridine (bpy-phen), possessing a bonding cavity similar to dpp, was also prepared. The Ru(II) complex of this ligand does not have two rotatable pyridines in the equatorial plane and thus shows different flexibility from the [Ru(dpp)] complexes. All the complexes showed activity towards water oxidation. Investigation of their catalytic behavior and electrochemical properties suggests that they may follow the same catalytic pathway as the prototype [Ru(dpp)pic2](2+) involving a seven-coordinated [Ru(IV)(O)] intermediate. The influence of coordination geometry on catalytic performance is analyzed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.