Mild cognitive impairment (MCI) is an early stage of age-inappropriate cognitive decline, which could develop into dementia – an untreatable neurodegenerative disorder. An early detection of MCI is a crucial step for timely prevention and intervention. To tackle this problem, recent studies have developed deep learning models to detect MCI and various types of dementia using data obtained from the classic clock-drawing test (CDT), a popular neuropsychological screening tool that can be easily and rapidly implemented for assessing cognitive impairments in an aging population. While these models succeed at distinguishing severe forms of dementia, it is still difficult to predict the early stage of the disease using the CDT data alone. Also, the state-of-the-art deep learning techniques still face the black-box challenges, making it questionable to implement them in the clinical setting. Here, we propose a novel deep learning modeling framework that incorporates data from multiple drawing tasks including the CDT, cube-copying, and trail-making tasks obtained from a digital platform. Using self-attention and soft-label methods, our model achieves much higher classification performance at detecting MCI compared to those of a well-established convolutional neural network model. Moreover, our model can highlight features of the MCI data that considerably deviate from those of the healthy aging population, offering accurate predictions for detecting MCI along with visual explanation that aids the interpretation of the deep learning model.
Phosphorus (P) is an essential mineral nutrient and one of the key factors determining crop productivity. P-deficient plants exhibit visual leaf symptoms, including chlorosis, and alter spectral reflectance properties. In this study, we evaluated leaf inorganic phosphate (Pi) contents, plant growth and reflectance spectra (420–790 nm) of 172 Thai rice landrace varieties grown hydroponically under three different P supplies (overly sufficient, mildly deficient and severely deficient conditions). We reported correlations between Pi contents and reflectance ratios computed from two wavebands in the range of near infrared (720–790 nm) and visible energy (green-yellow and red edge) (r > 0.69) in Pi-deficient leaves. Artificial neural network models were also developed which could classify P deficiency levels with 85.60% accuracy and predict Pi content with R2 of 0.53, as well as highlight important waveband sections. Using 217 reflectance ratio indices to perform genome-wide association study (GWAS) with 113,114 SNPs, we identified 11 loci associated with the spectral reflectance traits, some of which were also associated with the leaf Pi content trait. Hyperspectral measurement offers a promising non-destructive approach to predict plant P status and screen large germplasm for varieties with high P use efficiency.
Background Mild cognitive impairment (MCI) is an early stage of cognitive decline which could develop into dementia. An early detection of MCI is a crucial step for timely prevention and intervention. Recent studies have developed deep learning models to detect MCI and dementia using a bedside task like the classic clock drawing test (CDT). However, it remains a challenge to predict the early stage of the disease using the CDT data alone. Moreover, the state-of-the-art deep learning techniques still face black box challenges, making it questionable to implement them in a clinical setting. Methods We recruited 918 subjects from King Chulalongkorn Memorial Hospital (651 healthy subjects and 267 MCI patients). We propose a novel deep learning framework that incorporates data from the CDT, cube-copying, and trail-making tests. Soft label and self-attention were applied to improve the model performance and provide a visual explanation. The interpretability of the visualization of our model and the Grad-CAM approach were rated by experienced medical personnel and quantitatively evaluated using intersection over union (IoU) between the models’ heat maps and the regions of interest. Results Rather than using a single CDT image in the baseline VGG16 model, using multiple drawing tasks as inputs into our proposed model with soft label significantly improves the classification performance between the healthy aging controls and the MCI patients. In particular, the classification accuracy increases from 0.75 (baseline model) to 0.81. The F1-score increases from 0.36 to 0.65, and the area under the receiver operating characteristic curve (AUC) increases from 0.74 to 0.84. Compared to the multi-input model that also offers interpretable visualization, i.e., Grad-CAM, our model receives higher interpretability scores given by experienced medical experts and higher IoUs. Conclusions Our model achieves better classification performance at detecting MCI compared to the baseline model. In addition, the model provides visual explanations that are superior to those of the baseline model as quantitatively evaluated by experienced medical personnel. Thus, our work offers an interpretable machine learning model with high classification performance, both of which are crucial aspects of artificial intelligence in medical diagnosis.
Introduction: Spatio-temporal MRI methods enable whole brain multi-parametric mapping at ultra-fast acquisition times through efficient k-space encoding, but can have very long reconstruction times, which limit their integration into clinical practice. Deep learning (DL) is a promising approach to accelerate reconstruction, but can be computationally intensive to train and deploy due to the large dimensionality of spatio-temporal MRI. DL methods also need large training data sets and can produce results that don't match the acquired data if data consistency is not enforced. The aim of this project is to reduce reconstruction time using DL whilst simultaneously limiting the risk of deep learning induced hallucinations, all with modest hardware requirements. Methods: Deep Learning Initialized Compressed Sensing (Deli-CS) is proposed to reduce the reconstruction time of iterative reconstructions by "kick-starting" the iterative reconstruction with a DL generated starting point. The proposed framework is applied to volumetric multi-axis spiral projection MRF that achieves whole-brain T1 and T2 mapping at 1-mm isotropic resolution for a 2-minute acquisition. First, the traditional reconstruction is optimized from over two hours to less than 40 minutes while using more than 90% less RAM and only 4.7 GB GPU memory, by using a memory-efficient GPU implementation. The Deli-CS framework is then implemented and evaluated against the above reconstruction. Results: Deli-CS achieves comparable reconstruction quality with 50% fewer iterations bringing the full reconstruction time to 20 minutes. Conclusion: Deli-CS reduces the reconstruction time of subspace reconstruction of volumetric spatio-temporal acquisitions by providing a warm start to the iterative reconstruction algorithm.
Background: Mild cognitive impairment (MCI) is an early stage of cognitive decline beyond the normal aging process, which could develop into dementia. An early detection of MCI is a crucial step for timely prevention and intervention. Recent studies have developed deep learning models to detect MCI and dementia using a bedside task like the classic clock-drawing test (CDT). While these models succeed at distinguishing severe forms of dementia, it remains a challenge to predict the early stage of the disease using the CDT data alone. Moreover, the state-of-the-art deep learning techniques still face the black-box challenges, making it questionable to implement them in the clinical setting.Methods: We consecutively recruited 981 subjects from Geriatric Clinic at King Chulalongkorn Memorial Hospital (651 healthy subjects and 267 MCI patients according to Petersen’s criteria). We propose a novel deep learning modeling framework that incorporates data from multiple drawing tasks including the CDT, cube-copying, and trail-making tasks obtained from a digital platform. Soft-label method and self-attention were applied to improve the model performance and provide visual explanation that aids the interpretation of the deep learning model. The performance of the model was measured on an independent dataset. The visualization of our model and the traditional grad-CAM approach were scored by experienced medical personnels. Results: Using multiple drawings as inputs improves classification between healthy versus MCI in terms of accuracy (0.75 ± 0.01 vs. 0.80 ± 0.01), F1 score (0.36 ± 0.04 vs. 0.59 ± 0.02) and AUC (0.74 ± 0.01 vs. 0.81 ± 0.02). By adding soft-label and self-attention methods improve the accuracy (0.81 ± 0.01) F1 score (0.65 ± 0.01) and AUC (0.84 ± 0.01). The experienced medical personnels preferred the visualization of our model over the grad-CAM model (2.82 ± 0.49 vs. 1.52 ± 0.54). Conclusions: Our model achieves better classification performance at detecting MCI compared to a well-established convolutional neural network model. Moreover, our model can highlight features of the MCI data that considerably deviate from those of the healthy aging population, offering accurate predictions for detecting MCI along with visual explanation that aids the interpretation of the deep learning model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.