Opisthorchiasis caused by Opisthorchis viverrini remains a major public health problem in many parts of Southeast Asia, including Thailand, Lao PDR, Vietnam and Cambodia. The infection is associated with a number of hepatobiliary diseases, including cholangitis, obstructive jaundice, hepatomegaly, cholecystitis and cholelithiasis. Multi-factorial etiology of cholangiocarcinoma, mechanical damage, parasite secretions, and immunopathology may enhance cholangiocarcinogenesis. Moreover, both experimental and epidemiological evidences strongly implicate liver fluke infection as the major risk factor in cholangiocarcinoma, cancer of the bile ducts. The liver fluke infection is induced by eating raw or uncooked fish products that is the tradition and popular in the northeastern and northern region, particularly in rural areas, of Thailand. The health education programs to prevent and control opisthorchiasis are still required in the high-risk areas.
Opisthorchiasis caused by Opisthorchis viverrini (O. viverrini ) remains a major public health problem in many parts of Southeast Asia including Thailand, Lao PDR, Vietnam and Cambodia. The infection is associated with a number of hepatobiliary diseases, including cholangitis, obstructive jaundice, hepatomegaly, cholecystitis, cholelithiasis and cholangiocarcinoma. The liver fluke infection was induced by eating raw or uncooked fish products that is the tradition and popular in the northeastern and northern region, particularly in rural areas of Thailand. Health education programs to prevent and control opisthorchiasis are still required in high-risk areas.
BackgroundThe liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.Methodology/Principal FindingsHere, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt) encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa), prosegment (95 aa), and mature protease (213 aa). BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%), Paragonimus westermani (58%), Schistosoma mansoni and S. japonicum (52%), and with vertebrate cathepsin F (51%). Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of ∼3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not autocatalytically process and activate to a mature enzyme, trans-processing by Fasciola hepatica cathepsin L cleaved the prosegment of Ov-CF-1, releasing a mature cathepsin F with activity against the peptide Z-Phe-Arg-NHMec >50 times that of the zymogen. Immunocytochemistry using antibodies raised against the recombinant enzyme showed that Ov-CF-1 is expressed in the gut of the mature hermaphroditic fluke and also in the reproductive structures, including vitelline glands, egg, and testis. Ov-CF-1 was detected in bile duct epithelial cells surrounding the flukes several weeks after infection of hamsters with O. viverrini and, in addition, had accumulated in the secondary (small) bile ducts where flukes cannot reach due to their large size.Conclusions/SignificanceA cathepsin F cysteine protease of the human liver fluke O. viverrini has been characterized at the gene and protein level. Secretion of this protease may contribute to the hepatobiliary abnormalities, including cholangiocarcinogenesis, observed in individuals infected with this parasite.
Intestinal capillariasis caused by Capillaria philippinensis appeared first in the Philippines and subsequently in Thailand, Japan, Iran, Egypt and Taiwan; major outbreaks have occurred in the Philippines and Thailand. This article reviews the epidemiology, history and sources
Background: Helicobacter pylori infection and premalignant gastric mucosa can be reliably identified using conventional narrow band imaging (C-NBI) gastroscopy. The aim of our study was to compare standard biopsy with site specific biopsy for diagnosis of H. pylori infection and premalignant gastric mucosa in daily clinical practice. Materials and Methods: Of a total of 500 patients who underwent gastroscopy for investigation of dyspeptic symptoms, 250 patients underwent site specific biopsy using C-NBI (Group 1) and 250 standard biopsy (Group 2). Sensitivity, specificity, and positive and negative predictive values were assessed. The efficacy of detecting H. pylori associated gastritis and premalignant gastric mucosa according to the updated Sydney classification was also compared. Results: In group 1 the sensitivity, specificity, positive and negative predictive values for predicting H. pylori positivity were 95.4%, 97.3%, 98.8% and 90.0% respectively, compared to 92.9%, 88.6%, 83.2% and 76.1% in group 2. Site specific biopsy was more effective than standard biopsy in terms of both H. pylori infection status and premalignant gastric mucosa detection (P<0.01). Conclusions: Site specific biopsy using C-NBI can improve detection of H. pylori infection and premalignant gastric mucosa in daily clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.