This paper introduced a comparison method for three explicitly defined intermediate encoding methods in generative design for two-dimensional soft robotic units. This study evaluates a conventional genetic algorithm with full access to removing elements from the design domain using an implicit random encoding layer, a Lindenmayer system encoding mimicking biological growth patterns and a compositional pattern producing network encoding for 2D pattern generation. The objective of the optimisation problem is to match the deformation of a single actuator unit with a desired target shape, specifically uni-axial elongation, under internal pressure. The study results suggest that the Lindenmayer system encoding generates candidate units with fewer function evaluations than the traditional implicitly encoded genetic algorithm. However, the distribution of constraint and internal energy is similar to that of the random encoding, and the Lindenmayer system encoding produces a less diverse population of candidate units. In contrast, despite requiring more function evaluations than the Lindenmayer System encoding, the Compositional Pattern Producing Network encoding produces a similar diversity of candidate units. Overall, the Compositional Pattern Producing Network encoding results in a proportionally higher number of high-performing units than the random or Lindenmayer system encoding, making it a viable alternative to a conventional monolithic approach. The results suggest that the compositional pattern producing network encoding may be a promising approach for designing soft robotic actuators with desirable performance characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.