We present a collocation approach based on redefined cubic B-spline (RCBS) functions and finite difference formulation to study the approximate solution of time fractional Allen-Cahn equation (ACE). We discretize the time fractional derivative of order α ∈ (0, 1] by using finite forward difference formula and bring RCBS functions into action for spatial discretization. We find that the numerical scheme is of order O(h 2 + t 2-α) and unconditionally stable. We test the computational efficiency of the proposed method through some numerical examples subject to homogeneous/nonhomogeneous boundary constraints. The simulation results show a superior agreement with the exact solution as compared to those found in the literature.
In this study, we have proposed an efficient numerical algorithm based on third degree modified extended B-spline (EBS) functions for solving time-fractional diffusion wave equation with reaction and damping terms. The Caputo time-fractional derivative has been approximated by means of usual finite difference scheme and the modified EBS functions are used for spatial discretization. The stability analysis and derivation of theoretical convergence validates the authenticity and effectiveness of the proposed algorithm. The numerical experiments show that the computational outcomes are in line with the theoretical expectations. Moreover, the numerical results are proved to be better than other methods on the topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.