Motoneuron diseases, like spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), are associated with proteins that because of gene mutation or peculiar structures, acquire aberrant (misfolded) conformations toxic to cells. To prevent misfolded protein toxicity, cells activate a protein quality control (PQC) system composed of chaperones and degradative pathways (proteasome and autophagy). Inefficient activation of the PQC system results in misfolded protein accumulation that ultimately leads to neuronal cell death, while efficient macroautophagy/autophagy-mediated degradation of aggregating proteins is beneficial. The latter relies on an active retrograde transport, mediated by dynein and specific chaperones, such as the HSPB8-BAG3-HSPA8 complex. Here, using cellular models expressing aggregate-prone proteins involved in SBMA and ALS, we demonstrate that inhibition of dynein-mediated retrograde transport, which impairs the targeting to autophagy of misfolded species, does not increase their aggregation. Rather, dynein inhibition correlates with a reduced accumulation and an increased clearance of mutant ARpolyQ, SOD1, truncated TARDBP/TDP-43 and expanded polyGP C9ORF72 products. The enhanced misfolded protein clearance is mediated by the proteasome, rather than by autophagy and correlates with the upregulation of the HSPA8 cochaperone BAG1. In line, overexpression of BAG1 increases the proteasome-mediated clearance of these misfolded proteins. Our data suggest that when the misfolded proteins cannot be efficiently transported toward the perinuclear region of the cells, where they are either degraded by autophagy or stored into the aggresome, the cells activate a compensatory mechanism that relies on the induction of BAG1 to target the HSPA8-bound cargo to the proteasome in a dynein-independent manner.
Summary
Matrin3 (MATR3) is a nuclear RNA/DNA-binding protein that plays pleiotropic roles in gene expression regulation by directly stabilizing target RNAs and supporting the activity of transcription factors by modulating chromatin architecture. MATR3 is involved in the differentiation of neural cells, and, here, we elucidate its critical functions in regulating pluripotent circuits in human induced pluripotent stem cells (hiPSCs). MATR3 downregulation affects hiPSCs' differentiation potential by altering key pluripotency regulators' expression levels, including OCT4, NANOG, and LIN28A by pleiotropic mechanisms. MATR3 binds to the
OCT4
and
YTHDF1
promoters favoring their expression. YTHDF1, in turn, binds the m6A-modified OCT4 mRNA. Furthermore, MATR3 is recruited on ribosomes and controls pluripotency regulating the translation of specific transcripts, including NANOG and LIN28A, by direct binding and favoring their stabilization. These results show that MATR3 orchestrates the pluripotency circuitry by regulating the transcription, translational efficiency, and epitranscriptome of specific transcripts.
Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.