Background Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with increased risk for intracranial aneurysm (IA). However, how such variants affect gene expression within IA is poorly understood. We used publicly-available ChIP-Seq data to study chromatin landscapes surrounding risk loci to determine whether IA-associated SNPs affect functional elements that regulate gene expression in cell types comprising IA tissue. Methods We mapped 16 significant IA-associated SNPs to linkage disequilibrium (LD) blocks within human genome. Using ChIP-Seq data, we examined these regions for presence of H3K4me1, H3K27ac, and H3K9ac histone marks (typically associated with latent/active enhancers). This analysis was conducted in several cell types that are present in IA tissue (endothelial cells, smooth muscle cells, fibroblasts, macrophages, monocytes, neutrophils, T cells, B cells, NK cells). In cell types with significant histone enrichment, we used HiC data to investigate topologically associated domains (TADs) encompassing the LD blocks to identify genes that may be affected by IA-associated variants. Bioinformatics were performed to determine the biological significance of these genes. Genes within HiC-defined TADs were also compared to differentially expressed genes from RNA-seq/microarray studies of IA tissues. Results We found that endothelial cells and fibroblasts, rather than smooth muscle or immune cells, have significant enrichment for enhancer marks on IA risk haplotypes (p < 0.05). Bioinformatics demonstrated that genes within TADs subsuming these regions are associated with structural extracellular matrix components and enzymatic activity. The majority of histone marked TADs (83% fibroblasts [IMR90], 77% HUVEC) encompassed at least one differentially expressed gene from IA tissue studies. Conclusions These findings provide evidence that genetic variants associated with IA risk act on endothelial cells and fibroblasts. There is strong circumstantial evidence that this may be mediated through altered enhancer function, as genes in TADs encompassing enhancer marks have also been shown to be differentially expressed in IA tissue. These genes are largely related to organization and regulation of the extracellular matrix. This study builds upon our previous (Poppenberg et al., BMC Med Genomics, 2019) by including a more diverse set of data from additional cell types and by identifying potential affected genes (i.e. those in TADs).
Introduction: Genome-wide association studies (GWAS) have identified numerous stroke-associated SNPs. To understand how SNPs affect gene expression related to increased stroke risk, we studied epigenetic landscapes surrounding 26 common, validated stroke-associated loci. Methods: We mapped the SNPs to linkage disequilibrium (LD) blocks and examined H3K27ac, H3K4me1, H3K9ac, and H3K4me3 histone marks and transcription-factor binding-sites in pathologically relevant cell types (hematopoietic and vascular cells). Hi-C data were used to identify topologically associated domains (TADs) encompassing the LD blocks and overlapping genes. Results: Fibroblasts, smooth muscle, and endothelial cells showed significant enrichment for enhancer-associated marks within stroke-associated LD blocks. Genes within encompassing TADs reflected vessel homeostasis, cellular turnover, and enzymatic activity. Conclusions: Stroke-associated genetic variants confer risk predominantly through vascular cells rather than hematopoietic cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.