Auditory sensitivity has often been measured by identifying neural threshold in real-time (online) which can introduce bias in the audiograms that are produced. We tested this by recording auditory nerve activity of the notodontid moth Nadata gibbosa elicited by bat-like ultrasound and analysing the response offline. We compared this audiogram with a published online audiogram showing that the bias introduced can result in a difference in the audiogram shape. In the second part of our study we compared offline audiograms using spike number as threshold with others that used spike period and stimulus/spike latency, variables that have been suggested as providing behaviourally functional criteria. These comparisons reveal that functional audiograms are more flatly tuned than simple spike audiograms. The shapes of behavioural audiograms are discussed in the context of the selection pressure that maintains their shape, bat predation. Finally, we make predictions on the distance from bats at which notodontid moths use negative phonotaxis or the acoustic startle response.
By examining the mechanical properties of the tympanum of the noctuid moth, Noctua pronuba, Windmill et al. (2006) suggested that this insect increases (up-tunes) the frequencies of its best hearing when exposed to high intensity sounds (HIS) resembling the echolocation calls of attacking bats. We tested whether this biophysical phenomenon was encoded in the neural responses of this moth's most sensitive auditory receptor (A1 cell) before and after exposure to HIS. We measured: (1) the number of A1 action potentials (spikes) per stimulus pulse; (2) the proportion of A1 spike periods below that determined to elicit evasive flight maneuvers and, (3) the change in A1 cell firing (spike number, interspike interval, stimulus/spike latency) over a duration of time similar to that in which up-tuning lasts. We observed no significant spiking response changes in the predicted direction to any of the frequencies tested following exposure to HIS and we observed only two of the 24 predicted time-dependent changes to A1 firing. These results indicate that tympanal up-tuning does not result in a change to this moth's auditory frequency sensitivity and we suggest either sensillar resonances or increases in thoracic muscle tension following exposure to HIS as alternative explanations.
Auditory sensitivity has often been measured by identifying neural threshold in real time (online) which can introduce bias in the audiograms that are produced. This was tested by recording auditory nerve activity of the Notodontid moth Nadata gibbosa elicited by bat-like ultrasound and analyzing the response offline. The offline audiogram was compared to a published online audiogram showing that the bias introduced can result in a difference in both the best frequency of this moth ear and the audiogram shape. The offline neural threshold audiogram was then compared to audiograms produced using behavioral threshold definitions based on (1) spike period and (2) the latency to first spike, showing that audiograms produced using these theoretical behavioral definitions to have a similar shape. Finally, predictions on the distance at which Notodontid moths may evade bats using negative phonotaxis or the acoustic startle response are made, using the number of spikes elicited as a proxy for distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.