A series of Ru(III)-NHC complexes, identified as [RuIII(PyNHCR)(Cl)3(H2O)] (1a-c), have been prepared, starting from RuCl3·3H2O following a base-free route. The Lewis acidic Ru(III) centre operates via a halide-assisted, electrophilic C-H...
The effect of contact ion pairs and comparison of the three halide ions on the C-H activation during the synthesis of Ru(III)-NHC complexes 1a and 1b have been investigated. DFT modeling of two pathways for the formation of Ru(III)-NHC complexes, viz. halide coordination pathway and ion-pair pathway, reveals the effect of ion pairing. The ion-pair path is preferred for azolium salts with Cl- and I-, whereas with Br-, the reaction follows the halide coordination route leading to the mixed halide complex. The higher activation barrier for the reaction with Cl- ions can be explained in terms of greater stabilization of the intermediates, compared to the transition states, due to halide coordination or hydrogen bonding with Cl- ions. Furthermore, the successful synthesis of 1b from the reaction of RuCl3·3H2O and the corresponding imidazolium salt precursor with Cl- in dioxane at 100 °C validates the conclusions of the DFT studies.
A series of Ru(III)-NHC complexes, identified as [RuIII(PyNHCR)(Cl)3(H2O)] (1a-c), have been prepared, starting from RuCl3·3H2O following a base-free route. The Lewis acidic Ru(III) centre operates via a halide-assisted, electrophilic C-H activation for carbene generation. Best results were obtained with azolium salts having I- anion while ligand precursors with Cl-, BF4-, and PF6- gave no complex formation and those with Br- gave a product with mixed halides. The structurally simple, air and moisture-stable complexes represent rare examples of paramagnetic Ru(III)-NHC complexes. Further, these benchtop stable Ru(III)-NHC complexes were shown to be excellent metal precursors for the synthesis of new [RuII(PyNHCR)(Cl)2(PPh3)2] (2a-c) and [RuII(PyNHCR)(CNCMe)I]PF6 (3a-c) complexes. All the complexes have been characterised using spectroscopic methods, and structures of 1a, 1b, 2c and 3a have been determined using the single-crystal X-ray diffraction technique. This work allows easy access to new Ru-NHC complexes for the study of new properties and novel applications.
A series of Ru(III)-PyNHC complexes, identified as [RuIII(PyNHCR)(Cl)3(H2O)] (1ac), have been prepared following a base-free route. The structurally simple, air and moisture stable complexes represent rare examples of Ru(III)-NHC complexes. Further, these benchtop stable Ru(III)-PyNHC complexes were shown to be excellent metal precursors for the synthesis of new [RuII(PyNHCR)(Cl)2(PPh3)2] (2a-c) and [RuII(PyNHCR)(CNCMe)I]PF6 (3a-c) pincer complexes. All the complexes have been characterised using spectroscopic methods, and structures of 1a, 1b, 2c and 3a have been determined using the single-crystal X-ray diffraction technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.