This research work primarily focused on investigating the effects of changing rotational speed on the forming temperature and microstructure during incremental sheet metal forming (ISF) of AA-2219-O and AA-2219-T6 sheets. Tool rotational speed was varied in the defined range (50–3000 rpm). The tool feed rate of 3000 mm/min and step size of 0.3 mm with spiral tool path were kept fixed in the tests. The sheets were formed into pyramid shapes of 45° draw angle, with the hemispherical end forming tool of 12 mm diameter. While the sheets were forming, the temperature variation due to friction at the sheet–tool contact zone was recorded, using a non-contact laser projected infrared temperature sensor. It was observed that the temperature rising rate for the T6 sheet during ISF is higher as compared to the annealed sheet, thereby showing that the T6 tempered sheet offers higher friction than the annealed sheet. Due to this reason, the T6 tempered sheet fails to achieve the defined forming depth of 25 mm when the rotational speed exceeds 2000 rpm. The effects of rotational speed and associated rise in the temperature were examined on the microstructure, using the scanning electron microscopic (SEM). The results reveal that the density of second phase particles reduces with increasing speed reasoning to corresponding temperature rise. However, the particle size in both tempers of AA2219 received a slight change and showed a trivial response to an increase in the rotational speed.
The co-administration of M. alba with gentamicin prevented renal functioning alterations expected with the use of gentamicin alone. Therefore, it can be concluded that M. alba to protect from kidney damage, which may be because of its free radical scavenging and diuretic properties.
In this research work, a wideband metamaterial-inspired circularly polarized antenna array is designed. The designed antenna array has a low radar cross-section (RCS) but high gain. The basic element of the planar array is analyzed as a dual-band electromagnetic absorber. Under normal incidence, the designed basic element has two absorbing peaks at 3.6 and 11.2 GHz. Further, four elements of the 4 × 4 elements array are connected to the feeding network through metallic vias. The feeding network is designed on the bottom layer. The circular polarization is archived by feeding the cross shape metallic resonator at two feed points, in a manner that there is a 90 time phase difference between the fields of two. It is shown that a good axial ratio is obtained over a wideband. This design method simultaneously validates high gain antenna performance and also meets the conditions of low-RCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.