Disease detection in agriculture is critical in severe weather conditions. Keeping an eye on many cotton fields is challenging for farmers. Deep learning and image processing identify agricultural ailments before they spread and further damage. Cotton crop with the most important correlation quantities among pest disease existence are inspected by predictors. In this study, transfer learning methods for analysis are checked. The machine learning approach developed accurately distinguishes healthy and unhealthy plants. As a result, the proposed model may be used to monitor a wide range of areas for more rapid analysis and action, leading to increased productivity. It is possible to anticipate a timeline using ARIMA. A long-term study reveals that the value swipes widely during short and long periods due to random influences. It is also inspected how the recommended approach is affected by using several cotton crop characteristics. In addition to separating green crops from other crops in the field, this procedure can also separate harvests such as Cotton from other crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.