Background
Several research efforts have evaluated the impact of various factors including a) socio-demographics, (b) health indicators, (c) mobility trends, and (d) health care infrastructure attributes on COVID-19 transmission and mortality rate. However, earlier research focused only on a subset of variable groups (predominantly one or two) that can contribute to the COVID-19 transmission/mortality rate. The current study effort is designed to remedy this by analyzing COVID-19 transmission/mortality rates considering a comprehensive set of factors in a unified framework.
Methods and findings
We study two per capita dependent variables: (1) daily COVID-19 transmission rates and (2) total COVID-19 mortality rates. The first variable is modeled using a linear mixed model while the later dimension is analyzed using a linear regression approach. The model results are augmented with a sensitivity analysis to predict the impact of mobility restrictions at a county level. Several county level factors including proportion of African-Americans, income inequality, health indicators associated with Asthma, Cancer, HIV and heart disease, percentage of stay at home individuals, testing infrastructure and Intensive Care Unit capacity impact transmission and/or mortality rates. From the policy analysis, we find that enforcing a stay at home order that can ensure a 50% stay at home rate can result in a potential reduction of about 33% in daily cases.
Conclusions
The model framework developed can be employed by government agencies to evaluate the influence of reduced mobility on transmission rates at a county level while accommodating for various county specific factors. Based on our policy analysis, the study findings support a county level stay at home order for regions currently experiencing a surge in transmission. The model framework can also be employed to identify vulnerable counties that need to be prioritized based on health indicators for current support and/or preferential vaccination plans (when available).
Background: Several research efforts have evaluated the impact of various factors including a) socio-demographics, (b) health indicators, (c) mobility trends, and (d) health care infrastructure attributes on COVID-19 transmission and mortality rate. However, earlier research focused only on a subset of variable groups (predominantly one or two) that can contribute to the COVID-19 transmission/mortality rate. The current study effort is designed to remedy this by analyzing COVID-19 transmission/mortality rates considering a comprehensive set of factors in a unified framework.
Method: We study two per capita dependent variables: (1) daily COVID-19 transmission rates and (2) total COVID-19 mortality rates. The first variable is modeled using a linear mixed model while the later dimension is analyzed using a linear regression approach. The model results are augmented with a sensitivity analysis to predict the impact of mobility restrictions at a county level.
Findings: Several county level factors including proportion of African-Americans, income inequality, health indicators associated with Asthma, Cancer, HIV and heart disease, percentage of stay at home individuals, testing infrastructure and Intensive Care Unit capacity impact transmission and/or mortality rates. From the policy analysis, we find that enforcing a stay at home order that can ensure a 50% stay at home rate can result in a potential reduction of about 30% in daily cases.
Interpretation: The model framework developed can be employed by government agencies to evaluate the influence of reduced mobility on transmission rates at a county level while accommodating for various county specific factors. Based on our policy analysis, the study findings support a county level stay at home order for regions currently experiencing a surge in transmission. The model framework can also be employed to identify vulnerable counties that need to be prioritized based on health indicators for current support and/or preferential vaccination plans (when available).
Funding: None.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.