Listeria monocytogenes is a foodborne pathogen of significant concern to the agricultural and food processing industry because of its ability to grow and persist in cool and moist environments and its association with listeriosis, a disease with a very high mortality rate. Although there have been no listeriosis outbreaks attributed to fresh mushrooms in the United States, retail surveys and recalls are evidence that L. monocytogenes contamination of mushrooms (Agaricus bisporus) can occur. The objective of this study was to determine the prevalence of Listeria spp., including L. monocytogenes, in a small-scale mushroom production facility on the campus of the Pennsylvania State University in the United States. Of 184 samples taken from five production zones within the facility, 29 (15.8%) samples were positive for Listeria spp. Among the Listeria spp. isolates, L. innocua was most prevalent (10.3%) followed by L. welshimeri (3.3%), L. monocytogenes (1.6%), and L. grayi (0.5%). L. monocytogenes was recovered only from the phase I raw material composting area. Isolates of L. monocytogenes were confirmed and serotyped by multiplex PCR. The epidemiological relatedness of the three L. monocytogenes isolates to those serotypes or lineages frequently encountered in listeriosis infections was determined by multi-virulence-locus sequence typing using six virulence genes, namely, prfA, inlB, inlC, dal, clpP, and lisR. The phylogenetic positions of the three isolates in the dendrogram prepared with data from other isolates of L. monocytogenes showed that all isolates were grouped with serotype 4a, lineage IIIA. To date, this serotype has rarely been reported in foodborne disease outbreaks.
Destruction of Escherichia coli O157:H7 in apple cider treated with fumaric acid and sodium benzoate (0.15% and 0.05% w/v, respectively) was determined under pH and storage temperatures that commonly occur in apple cider. At 5 °C storage, while destruction of E. coli O157:H7 in the presence of preservatives increased with time, there was little decline in E. coli O157:H7 populations in the absence of the preservatives. Increasing storage temperatures to 15 Њ Њ Њ Њ ЊC and 25 Њ Њ Њ Њ ЊC significantly increased the rate of destruction of E. coli O157:H7 in cider with the preservatives (P < 0.05). Increasing the pH of cider (from 3.2 to 4.7) decreased the rate of destruction of E. coli O157:H7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.