In the past few years, a remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures, known as plasmonic molecules. However, realization of such plasmonic molecules using nonlithographic approaches remains challenging largely due to the lack of facile and robust assembly methods. Previous attempts to achieve plasmonic nanoassemblies using molecular ligands were limited to dipolar assembly of nanostructures, which typically results in polydisperse linear and branched chains. Here, we demonstrate that core-satellite structures comprised of shape-controlled plasmonic nanostructures can be achieved through self-assembly using simple molecular cross-linkers. Prevention of self-conjugation and promotion of cross-conjugation among cores and satellites plays a key role in the formation of core-satellite heteroassemblies. The in-built electromagnetic hot-spots and Raman reporters of core-satellite structures make them excellent candidates for surface-enhanced Raman scattering probes.
Conventional SERS probes suffer from limited brightness and poor reproducibility and stability making them unsuitable for routine in vivo applications. A novel class of layered SERS probes is demonstrated in which individual nanostructures host electromagnetic hotspots, thus increasing brightness by more than two orders magnitude compared to conventional individual nanostructures.
Owing to the facile tunability of the localized surface plasmon resonance wavelength (LSPR) and large refractive index sensitivity, gold nanorods (AuNR) are of high interest as plasmonic nanotransducers for label-free biological sensing. We investigate the influence of gold nanorod dimensions on distance-dependent LSPR sensitivity and electromagnetic (EM) decay length using electrostatic layer-by-layer (LbL) assembly of polyelectrolytes. The electromagnetic decay length was found to increase linearly with both nanorod length and diameter, although to variable degrees. The rate of EM decay length increase with nanorod diameter is significantly higher compared to that of the length, indicating that diameter is a convenient handle to tune the EM decay length of gold nanorods. The ability to precisely measure the EM decay length of nanostructures enables the rational selection of plasmonic nanotransducer dimensions for the particular biosensing application.
Novel organic and inorganic nanostructures for localized and externally triggered delivery of therapeutic agents at a target site have received immense attention over the past decade owing to their enormous potential in treating complex diseases such as cancer. Gold nanocages, a novel class of hollow plasmonic nanostructures, have been recently demonstrated to serve as carriers for the delivery of payload with external trigger such as light or ultrasound. In this article, we demonstrate that surface enhanced Raman spectroscopy (SERS) can be employed to noninvasively monitor the release of payload from these hollow plasmonic nanostructures. The large enhancement of electromagnetic (EM) field at the interior surface of these nanostructures enables us to monitor the controlled release of Raman-active cargo from nanocages. Considering that SERS can be excited and collected in near-infrared (NIR) therapeutic window, this technique can serve as a powerful tool to monitor the drug release in vivo, providing additional control over externally triggered drug administration.
One of the major obstacles to implement nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is the lack of sensitive and practical DNA detection methods that can be seamlessly integrated into portable platforms. Herein we present a sensitive yet simple DNA detection method using a surface-enhanced Raman scattering (SERS) nanoplatform: the ultrabright SERS nanorattle. The method, referred to as the nanorattle-based method, involves sandwich hybridization of magnetic beads that are loaded with capture probes, target sequences, and ultrabright SERS nanorattles that are loaded with reporter probes. Upon hybridization, a magnet was applied to concentrate the hybridization sandwiches at a detection spot for SERS measurements. The ultrabright SERS nanorattles, composed of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for signal detection. Using this method, a specific DNA sequence of the malaria parasite Plasmodium falciparum could be detected with a detection limit of approximately 100 attomoles. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. These test models demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. Furthermore, the method’s simplicity makes it a suitable candidate for integration into portable platforms for POC and in resource-limited settings applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.