The transfer of spin angular momentum to a nanomagnet from a spin polarized current provides an efficient means of controlling the magnetization direction in nanomagnets. A unique consequence of this spin torque is that the spontaneous oscillations of the magnetization can be induced by applying a combination of a dc bias current and a magnetic field. Here we experimentally demonstrate a different effect, which can drive a nanomagnet into spontaneous oscillations without any need of spin torque. For the demonstration of this effect, we use a nano-pillar of magnetic tunnel junction (MTJ) powered by a dc current and connected to a coplanar waveguide (CPW) lying above the free layer of the MTJ. Any fluctuation of the free layer magnetization is converted into oscillating voltage via the tunneling magneto-resistance effect and is fed back into the MTJ by the CPW through inductive coupling. As a result of this feedback, the magnetization of the free layer can be driven into a continual precession. The combination of MTJ and CPW behaves similar to a laser system and outputs a stable rf power with quality factor exceeding 10,000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.