We have developed three types of materials composed of polyurethane–gelatin, polycaprolactone–gelatin, or polylactic acid–gelatin nanofibers by coaxially electro-spinning the hydrophobic core and gelatin sheath with a ratio of 1:5 at fixed concentrations. Results from attenuated total reflection-Fourier transformed infrared spectroscopy demonstrated the gelatin coating around nanofibers in all of the materials. Transmission electron microscopy images further displayed the core–sheath structures showing the core-to-sheath thickness ratio varied greatly with the highest ratio found in polyurethane-gelatin nanofibers. Scanning electron microscopy images revealed similar, uniform fibrous structures in all of the materials, which changed with genipin cross-linking due to interfiber interactions. Thermal analyses revealed varied interactions between the hydrophilic sheath and hydrophobic core among the three materials, which likely caused different core–sheath structures, and thus physicomechanical properties. The addition of gelatin around the hydrophobic polymer and their interactions led to the formation of graft scaffolds with tissue-like viscoelasticity, high compliance, excellent swelling capability, and absence of water permeability while maintaining competent tensile modulus, burst pressure, and suture retention. The hydrogel-like characteristics are advantageous for vascular grafting use, because of the capability of bypassing preclotting prior to implantation, retaining vascular fluid volume, and facilitating molecular transport across the graft wall, as shown by coculturing vascular cells sandwiched over a thick-wall scaffold. Varied core–sheath interactions within scaffolding nanofibers led to differences in graft functional properties such as water swelling ratio, compliance, and supporting growth of cocultured vascular cells. The PCL–gelatin scaffold with thick gelatin-sheathed nanofibers demonstrated a more compliant structure, elastic mechanics, and high water swelling property. Our results demonstrate a feasible approach to produce new hybrid, biodegradable nanofibrous scaffold biomaterials with interactive core–sheath structure, good biocompatibility, and tissue-like viscoelasticity, which may reduce potential problems with the use of individual polymers for vascular grafts.
Readily-available small-diameter arterial grafts require a great combination of materials properties, including high strength, compliance, suturability, blood sealing and antithrombogenicity, as well as anti-kinking property for those used in challenging anatomical situations. We have constructed grafts composed of coaxially-structured polycaprolactone (PCL)/ gelatin nanofibres, and tailored the material structures to achieve high strength, compliance and kink resistance, as well as excellent water sealing and anti-thrombogenicity. Coaxially-structured fibres in the grafts provided mechanical stability through the core, while flexibility and cell adhesion through the sheath. Results showed that graft compliance increased while strength decreased with the concentration ratio between core and sheath polymers. Compared to pure PCL fibrous surfaces, coaxial PCL/gelatin fibrous surfaces potently inhibited platelet adhesion and activation, providing excellent anti-thrombogenicity. To render sufficient burst strength and suturability, an additional layer of pure PCL was necessary to cap the layer of coaxial PCL/gelatin fibres. The two-layered grafts with the wall thickness comparable to native arteries demonstrated artery-like compliance and kink resistance, properties important to arteries under complex mechanical loading. The in vivo evaluation was performed using the interposition carotid artery graft model in rabbits for three months. Interestingly, results from ultrasonic imaging and histological analysis demonstrated that the two-layered grafts with a thinner outer PCL layer, which possessed higher compliance and kink resistance, showed increased blood flow, minimal lumen reduction and fibrosis. All vascular grafts exhibited patency and induced limited cell infiltration. Together, we presented a facile and useful approach to fabricate vascular grafts with superior graft performances, biomechanical properties, and blood compatibility. Grafts with artery-like compliance and flexibility have demonstrated improved implantation outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.