Ego-network, which represents relationships between a specific individual, i.e., the ego, and people connected to it, i.e., alters, is a critical target to study in social network analysis. Evolutionary patterns of ego-networks along time provide huge insights to many domains such as sociology, anthropology, and psychology. However, the analysis of dynamic ego-networks remains challenging due to its complicated time-varying graph structures, for example: alters come and leave, ties grow stronger and fade away, and alter communities merge and split. Most of the existing dynamic graph visualization techniques mainly focus on topological changes of the entire network, which is not adequate for egocentric analytical tasks. In this paper, we present egoSlider, a visual analysis system for exploring and comparing dynamic ego-networks. egoSlider provides a holistic picture of the data through multiple interactively coordinated views, revealing ego-network evolutionary patterns at three different layers: a macroscopic level for summarizing the entire ego-network data, a mesoscopic level for overviewing specific individuals' ego-network evolutions, and a microscopic level for displaying detailed temporal information of egos and their alters. We demonstrate the effectiveness of egoSlider with a usage scenario with the DBLP publication records. Also, a controlled user study indicates that in general egoSlider outperforms a baseline visualization of dynamic networks for completing egocentric analytical tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.