Cognitive radio networks (CRNs) have emerged as a promising solution to the ever-growing demand for additional spectrum resources and more efficient spectrum utilization. A large number of routing protocols for CRNs have been proposed recently, each based on different design goals, and evaluated in different scenarios, under different assumptions. However, little is known about the relative performance of all these protocols, let alone the tradeoffs among their different design goals. In this paper, we conduct the first detailed, empirical performance comparison of three representative routing protocols for CRNs, under the same realistic set of assumptions. Our extensive simulation study shows that the performance of routing protocols in CRNs is affected by a number of factors, in addition to PU activity, some of which have been largely ignored by the majority of previous works. We find that different protocols perform well under different scenarios, and investigate the causes of the observed performance. Furthermore, we present a generic software architecture for the experimental evaluation of CRN routing protocols on a testbed based on the USRP2 platform, and compare the performance of two protocols on a 6 node testbed. The testbed results confirm the findings of our simulation study.
Abstract-Cognitive radio networks (CRNs) have emerged as a promising solution to the ever-growing demand for additional spectrum resources and more efficient spectrum utilization. A large number of routing protocols for CRNs have been proposed recently, each based on different design goals, and evaluated in different scenarios, under different assumptions. However, little is known about the relative performance of all these protocols, let alone the tradeoffs among their different design goals.In this paper, we conduct the first detailed, empirical performance comparison of three representative routing protocols for CRNs, under the same realistic set of assumptions. Our extensive simulation study shows that the performance of routing protocols in CRNs is affected by a number of factors, in addition to PU activity, some of which have been largely ignored by the majority of previous works. We find that different protocols perform well under different scenarios, and investigate the causes of the observed performance. Furthermore, we present a generic software architecture for the experimental evaluation of CRN routing protocols on a testbed based on the USRP2 platform, and compare the performance of two protocols on a 6 node testbed. The testbed results confirm the findings of our simulation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.