With the growing prevalence of sensor and wireless networks comes a new demand for location-based access control mechanisms. We introduce the concept of secure location verification, and we show how it can be used for location-based access control. Then, we present the Echo protocol, a simple method for secure location verification. The Echo protocol is extremely lightweight: it does not require time synchronization, cryptography, or very precise clocks. Hence, we believe that it is well suited for use in small, cheap, mobile devices.
The IEEE 802.15.4 specification outlines a new class of wireless radios and protocols targeted at low power devices, personal area networks, and sensor nodes. The specification includes a number of security provisions and options. In this paper, we highlight places where application designers and radio designers should exercise care when implementing and using 802.15.4 devices. Specifically, some of the 802.15.4 optional features actually reduce security, so we urge implementors to ignore those extensions. We highlight difficulties in safely using the security API and provide recommendations on how to change the specification to make it less likely that people will deploy devices with poor security configurations.
With the growing prevalence of sensor and wireless networks comes a new demand for location-based access control mechanisms. We introduce the concept of secure location verification, and we show how it can be used for location-based access control. Then, we present the Echo protocol, a simple method for secure location verification. The Echo protocol is extremely lightweight: it does not require time synchronization, cryptography, or very precise clocks. Hence, we believe that it is well suited for use in small, cheap, mobile devices.
We describe the design and implementation of PEG, a networked system of distributed sensor nodes that detects an uncooperative agent called the evader and assists an autonomous robot called the pursuer in capturing the evader. PEG requires services such as leader election, routing, network aggregation, and closed loop control. Instead of using general purpose distributed system solutions for these services, we employ whole-system analysis and rely on spatial and physical properties to create simple and efficient mechanisms. We believe this approach advances sensor network design, yielding pragmatic solutions that leverage physical properties to simplify design of embedded distributed systems.We deployed PEG on a 400 square meter field using 100 sensor nodes, and successfully intercepted the evader in all runs. While implementing PEG, we confronted practical issues such as node breakage, packaging decisions, in situ debugging, network reprogramming, and system reconfiguration. We discuss the approaches we took to cope with these issues and share our experiences in deploying a large sensor network system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.