An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage–related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
AMP-activated protein kinase (AMPK) senses energetic stress and, in turn, promotes catabolic and suppresses anabolic metabolism coordinately to restore energy balance. We found that a diverse array of AMPK activators increased mTOR complex 2 (mTORC2) signaling in an AMPK-dependent manner in cultured cells. Activation of AMPK with the type 2 diabetes drug metformin (GlucoPhage) also increased mTORC2 signaling in liver in vivo and in primary hepatocytes in an AMPK-dependent manner. AMPK-mediated activation of mTORC2 did not result from AMPK-mediated suppression of mTORC1 and thus reduced negative feedback on PI3K flux. Rather, AMPK associated with and directly phosphorylated mTORC2 (mTOR in complex with rictor). As determined by two-stage in vitro kinase assay, phosphorylation of mTORC2 by recombinant AMPK was sufficient to increase mTORC2 catalytic activity toward Akt. Hence, AMPK phosphorylated mTORC2 components directly to increase mTORC2 activity and downstream signaling. Functionally, inactivation of AMPK, mTORC2, and Akt increased apoptosis during acute energetic stress. By showing that AMPK activates mTORC2 to increase cell survival, these data provide a potential mechanism for how AMPK paradoxically promotes tumorigenesis in certain contexts despite its tumor-suppressive function through inhibition of growth-promoting mTORC1. Collectively, these data unveil mTORC2 as a target of AMPK and the AMPK-mTORC2 axis as a promoter of cell survival during energetic stress.
Earlier research on rats with normal insulin sensitivity demonstrated that acute exercise increased insulin-stimulated glucose uptake (GU) concomitant with greater phosphorylation of Akt substrate of 160 kDa (pAS160). Because mechanisms for exercise effects on GU in insulin-resistant muscle are unknown, our primary objective was to assess insulin-stimulated GU, proximal insulin signaling (insulin receptor [IR] tyrosine phosphorylation, IR substrate 1–phosphatidylinositol-3-kinase, and Akt phosphorylation and activity), and pAS160 in muscles from acutely exercised (one session) and sedentary rats fed either chow (low-fat diet [LFD]; normal insulin sensitivity) or a high-fat diet (HFD; for 2 weeks, insulin-resistant). At 3 h postexercise (3hPEX), isolated epitrochlearis muscles were used for insulin-stimulated GU and insulin signaling measurements. Although exercise did not enhance proximal signaling in either group, insulin-stimulated GU at 3hPEX exceeded respective sedentary control subjects (Sedentary) in both diet groups. Furthermore, insulin-stimulated GU for LFD-3hPEX was greater than HFD-3hPEX values. For HFD-3hPEX muscles, pAS160 exceeded HFD-Sedentary, but in muscle from LFD-3hPEX rats, pAS160 was greater still than HFD-3hPEX values. These results implicated pAS160 as a potential determinant of the exercise-induced elevation in insulin-stimulated GU for each diet group and also revealed pAS160 as a possible mediator of greater postexercise GU of insulin-stimulated muscles from the insulin-sensitive versus insulin-resistant group.
single exercise bout can increase insulin-independent glucose transport immediately postexercise and insulin-dependent glucose transport (GT) for several hours postexercise. Akt substrate of 160 kDa (AS160) and TBC1D1 are paralog Rab GTPase-activating proteins that have been proposed to contribute to these exercise effects. Previous research demonstrated greater AS160 and Akt threonine phosphorylation in rat skeletal muscle at 3-4 h postexercise concomitant with enhanced insulin-stimulated GT. To further probe whether these signaling events or TBC1D1 phosphorylation were important for the enhanced postexercise insulin-stimulated GT, male Wistar rats were studied using four experimental protocols (2-h swim exercise, differing with regard to timing of muscle sampling and whether food was provided postexercise) that were known to vary in their influence of insulinindependent and insulin-dependent GT postexercise. The results indicated that, in isolated rat epitrochlearis muscle, 1) elevated phosphorylation of AS160 (measured using anti-phospho-Akt substrate, PAS-AS160, and phosphospecific anti-Thr 642 -AS160, pThr 642 -AS160) consistently tracked with elevated insulin-stimulated GT; 2) PAS-TBC1D1 was not different from sedentary values at 3 or 27 h postexercise, when insulin sensitivity was increased; 3) insulinstimulated Akt activity was not increased postexercise in muscles with increased insulin sensitivity; 4) PAS-TBC1D1 was increased immediately postexercise, when insulin-independent GT was elevated, and reversed at 3 and 27 h postexercise, when insulin-independent GT was also reversed; and 5) there was no significant effect of exercise or insulin on total abundance of AS160, TBC1D1, Akt, or GLUT4 protein with any of the protocols. The results are consistent with increased AS160 phosphorylation (PAS-AS160 or pThr 642 -AS160) but not increased PAS-TBC1D1 or Akt activity, which is important for increased postexercise insulin-stimulated GT in rat skeletal muscle. They also support the idea that increased TBC1D1 phosphorylation may play a role in the insulin-independent increase in GT postexercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.