There is a desperate need for safe and effective vaccines, therapies and diagnostics for SARS-CoV-2, the development of which will be aided by the discovery of potent and selective antibodies against relevant viral epitopes. Human phage display technology has revolutionized the process of identifying and optimizing antibodies, providing facile entry points for further applications. Here in, we use this technology to search for antibodies targeting the receptor binding domain (RBD) of CoV-2. Specifically, we screened a naïve human semi-synthetic phage library against RBD, leading to the identification of a high-affinity single chain fragment variable region (scFv). The scFv was further engineered into two other antibody formats (scFv-Fc and IgG1). All the three antibody formats showed high binding specificity to CoV-2 RBD and the spike antigens in different assay systems. Flow cytometry analysis demonstrated specific binding of the IgG1 format to cells expressing membrane bound CoV-2 spike protein. Docking studies revealed that the scFv recognizes an epitope that partially overlaps with angiotensin converting enzyme 2 (ACE2)-interacting sites on the CoV-2 RBD. Given its high specificity and affinity, we anticipate that these anti-CoV-2 antibodies will be useful as valuable reagents for accessing the antigenicity of vaccine candidates, as well as developing antibody-based therapeutics and diagnostics for CoV-2.
Background & objectives:
India has been reporting the cases of coronavirus disease 2019 (COVID-19) since January 30, 2020. The Indian Council of Medical Research (ICMR) formulated and established laboratory surveillance for COVID-19. In this study, an analysis of the surveillance data was done to describe the testing performance and descriptive epidemiology of COVID-19 cases by time, place and person.
Methods:
The data were extracted from January 22 to April 30, 2020. The frequencies of testing performance were described over time and by place. We described cases by time (epidemic curve by date of specimen collection; seven-day moving average), place (area map) and person (attack rate by age, sex and contact status), and trends were represented along with public health measures and events.
Results:
Between January 22 and April 30, 2020, a total of 1,021,518 individuals were tested for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Testing increased from about 250 individuals per day in the beginning of March to 50,000 specimens per day by the end of April 2020. Overall, 40,184 (3.9%) tests were reported positive. The proportion of positive cases was highest among symptomatic and asymptomatic contacts, 2-3-fold higher than among those with severe acute respiratory infection, or those with an international travel history or healthcare workers. The attack rate (per million) by age was highest among those aged 50-69 yr (63.3) and was lowest among those under 10 yr (6.1). The attack rate was higher among males (41.6) than females (24.3). The secondary attack rate was 6.0 per cent. Overall, 99.0 per cent of 736 districts reported testing and 71.1 per cent reported COVID-19 cases.
Interpretation & conclusions:
The coverage and frequency of ICMR's laboratory surveillance for SARS-CoV-2 improved over time. COVID-19 was reported from most parts of India, and the attack rate was more among men and the elderly and common among close contacts. Analysis of the data indicates that for further insight, additional surveillance tools and strategies at the national and sub-national levels are needed.
Immunization with radiation-attenuated sporozoites (RAS) shown to confer complete sterile protection against Plasmodia liver-stage (LS) infection that lasts about 6 to 9 months in mice. We have found that the intermittent infectious sporozoite challenge to immune mice following RAS vaccination extends the longevity of sterile protection by maintaining CD8+ T cell memory responses to LS infection. It is reported that CD8α+ dendritic cells (DCs) are involved in the induction of LS-specific CD8+ T cells following RAS or genetically attenuated parasite (GAP) vaccination. In this study, we demonstrate that CD8α+ DCs respond differently to infectious sporozoite or RAS inoculation. The higher accumulation and activation of CD8α+ DCs was seen in the liver in response to infectious sporozoite 72 h postinoculation and found to be associated with higher expression of chemokines (CCL-20 and CCL-21) and type I interferon response via toll-like receptor signaling in liver. Moreover, the infectious sporozoites were found to induce qualitative changes in terms of the increased MHCII expression as well as costimulatory molecules including CD40 on the CD8α+ DCs compared to RAS inoculation. We have also found that infectious sporozoite challenge increased CD40L-expressing CD4+ T cells, which could help CD8+ T cells in the liver through “licensing” of the antigen-presenting cells. Our results suggest that infectious sporozoite challenge to prior RAS immunized mice modulates the CD8α+ DCs, which might be shaping the fate of memory CD8+ T cells against Plasmodium LS infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.