Prenatal stress is known to epigenetically program offspring physiology and behaviour, and may become a risk factor for adult complex diseases. To gain insight into the underlying environment-gene interactions, we used proton nuclear magnetic resonance spectroscopy to analyze urinary metabolomes of male and female adolescents who were in utero during the 1998 Quebec Ice Storm. Metabolomic profiles in adolescent groups were found to be significantly different. Higher prenatal stress exposure generated alterations in metabolic pathways involved in energy metabolism and protein biosynthesis, such as branched-chain amino acid synthesis, alanine metabolism, and ketone body metabolism. Dysregulation of energy and protein metabolism suggests an increased risk of metabolic diseases like insulin resistance, diabetes, and obesity. These findings are consistent with prior observations of physiological phenotypes from this cohort. Understanding the impact of natural disasters on health risks will provide new and improved therapeutic strategies to mitigate stress-associated adverse health outcomes. Using metabolomic biomarkers may also assist in the prediction and prevention of these adverse outcomes.
Objective: Millions of sport-related concussions (SRC) occur annually in North America, and current diagnosis of concussion is based largely on clinical evaluations. The objective of this study was to determine whether urinary metabolites are significantly altered post-SRC compared to pre-injury.Setting: Outpatient sports medicine clinic.Participants: Twenty-six male youth sport participants.Methods: Urine was analyzed pre-injury and after SRC by 1H NMR spectroscopy. Data were analyzed using multivariate statistics, pairwise t-test, and metabolic pathway analysis. Variable importance analysis based on random variable combination (VIAVC) was applied to the entire data set and resulted in a panel of 18 features. Partial least square discriminant analysis was performed exploring the separation between pre-injury and post-SRC groups. Pathway topography analysis was completed to identify biological pathway involvement. Spearman correlations provide support for the relationships between symptom burden and length of return to play and quantifiable metabolic changes in the human urinary metabolome.Results: Phenylalanine and 3-indoxysulfate were upregulated, while citrate, propylene glycol, 1-methylhistidine, 3-methylhistidine, anserine, and carnosine were downregulated following SRC. A receiver operator curve (ROC) tool constructed using the 18-feature classifier had an area under the curve (AUC) of 0.887. A pairwise t-test found an additional 19 altered features, 7 of which overlapped with the VIAVC analysis. Pathway topology analysis indicated that aminoacyl-tRNA biosynthesis and beta-alanine metabolism were the two pathways most significantly changed. There was a significant positive correlation between post-SRC 2-hydroxybutyrate and the length of return to play (ρ = 0.482, p = 0.02) as well as the number of symptoms and post-SRC lactose (ρ = 0.422, p = 0.036).Conclusion: We found that 1H NMR metabolomic urinary analysis can identify a set of metabolites that can correctly classify SRC with an accuracy of 81.6%, suggesting potential for a more objective method of characterizing SRC. Correlations to both the number of symptoms and length of return to play indicated that 2-hydroxybutyrate and lactose may have potential applications as biomarkers for sport-related concussion.
Prenatal stress alters fetal programming, potentially predisposing the ensuing offspring to long-term adverse health outcomes. To gain insight into environmental influences on fetal development, this QF2011 study evaluated the urinary metabolomes of 4-year-old children (n = 89) who were exposed to the 2011 Queensland flood in utero. Proton nuclear magnetic resonance spectroscopy was used to analyze urinary metabolic fingerprints based on maternal levels of objective hardship and subjective distress resulting from the natural disaster. In both males and females, differences were observed between high and low levels of maternal objective hardship and maternal subjective distress groups. Greater prenatal stress exposure was associated with alterations in metabolites associated with protein synthesis, energy metabolism, and carbohydrate metabolism. These alterations suggest profound changes in oxidative and antioxidative pathways that may indicate a higher risk for chronic non-communicable diseases such obesity, insulin resistance, and diabetes, as well as mental illnesses, including depression and schizophrenia. Thus, prenatal stress-associated metabolic biomarkers may provide early predictors of lifetime health trajectories, and potentially serve as prognostic markers for therapeutic strategies in mitigating adverse health outcomes.
Renal cell carcinoma (RCC) accounts for approximately 3% of all adult malignancies, with clear cell subtype representing the majority of these cases. In the United States, the number of new cases of kidney and renal pelvis cancers was 15.6 per 100,000 men and women per year. Although the incidence of RCC has been increasing for several years, the landscape of RCC has changed significantly due to the use of highly sensitive imaging modalities. The percentage of early-stage T1 Kidney cancers has increased from 43% to more than 60% over the past two decades, with a 5-year survival rate of more than 90% for these early-stage tumors. 1 As diagnostic imaging plays a significant role in the detection and management of these cancers, a fundamental understanding of RCC and its various subtypes is essential for all medical imaging specialists.
Renal cell carcinoma (RCC) accounts for approximately 3% of all adult malignancies, with clear cell subtype representing the majority of these cases. In the United States, the number of new cases of kidney and renal pelvis cancers was 15.6 per 100,000 men and women per year. Although the incidence of RCC has been increasing for several years, the landscape of RCC has changed significantly due to the use of highly sensitive imaging modalities. The percentage of early-stage T1 Kidney cancers has increased from 43% to more than 60% over the past two decades, with a 5-year survival rate of more than 90% for these early-stage tumors. 1 As diagnostic imaging plays a significant role in the detection and management of these cancers, a fundamental understanding of RCC and its various subtypes is essential for all medical imaging specialists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.