Directional selectivity, in which neurons respond strongly to an object moving in a given direction ("preferred") but respond weakly or not at all to an object moving in the opposite direction ("null"), is a critical computation achieved in brain circuits. Previous measures of direction selectivity have compared the numbers of action potentials elicited by each direction of movement, but most sensory neurons display patterning, such as bursting, in their spike trains. To examine the contribution of patterned responses to direction selectivity, we recorded from midbrain neurons in weakly electric fish and found that most neurons responded with a combination of both bursts and isolated spikes to moving object stimuli. In these neurons, we separated bursts and isolated spikes using an interspike interval (ISI) threshold. The directional bias of bursts was significantly higher than that of either the full spike train or the isolated spike train. To examine the encoding and decoding of bursts, we built biologically plausible models that examine 1) the upstream mechanisms that generate these spiking patterns and 2) downstream decoders of bursts. Our model of upstream mechanisms uses an interaction between afferent input and subthreshold calcium channels to give rise to burst firing that occurs preferentially for one direction of movement. We tested this model in vivo by application of calcium antagonists, which reduced burst firing and eliminated the differences in direction selectivity between bursts, isolated spikes, and the full spike train. Our model of downstream decoders used strong synaptic facilitation to achieve qualitatively similar results to those obtained using the ISI threshold criterion. This model shows that direction selective information carried by bursts can be decoded by downstream neurons using biophysically plausible mechanisms.
Key points Considerable debate exists regarding whether electrical vestibular stimuli encoded by vestibular afferents induce a net signal of linear acceleration, rotation or a combination of the two. This debate exists because an isolated signal of head rotation encoded by the vestibular afferents can cause perceptions of both linear and angular motion. We recorded participants' perceptions in different orientations relative to gravity and predicted their responses by modelling the effect of electrical vestibular stimuli on vestibular afferents and a current model of central vestibular processing. We show that, even if electrical vestibular stimuli are encoded as a net signal of head rotation, participants perceive both linear acceleration and rotation motions, provided the electrical stimulation‐induced rotational vector has a component orthogonal to gravity. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying electrical vestibular stimulation. Abstract Electrical vestibular stimulation (EVS) is an increasingly popular biomedical tool for generating sensations of virtual motion in humans, for which the mechanism of action is a topic of considerable debate. Contention surrounds whether the evoked vestibular afferent activity encodes a signal of net rotation and/or linear acceleration. Central processing of vestibular self‐motion signals occurs through an internal representation of gravity that can lead to inferred linear accelerations in absence of a true inertial acceleration. Applying this model to virtual signals of rotation evoked by EVS, we predict that EVS will induce behaviours attributed to both angular and linear motion, depending on the head orientation relative to gravity. To demonstrate this, 18 subjects indicated their perceived motion during sinusoidal EVS when in one of four head/body positions orienting the gravitational vector parallel or orthogonal to the EVS rotation vector. During stimulation, participants selected one simulated movement from seven that corresponded best to what they perceived. Participants' responses in each orientation were predicted by a model combining the influence of EVS on vestibular afferents with known mechanisms of vestibular processing. When the EVS rotation vector had a component orthogonal to gravity, human perceptual responses were consistent with a non‐zero central estimate of interaural or superior‐inferior linear acceleration. The emergence of a perception of linear acceleration from a single rotational input signal clarifies the origins of the neural mechanisms underlying EVS, which has important implications for its use in human biomedical or sensory augmentation applications.
Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity need to be revised in such cases.
Animals can efficiently process sensory stimuli whose attributes vary over orders of magnitude by devoting specific neural pathways to process specific features in parallel. Weakly electric fish offer an attractive model system as electrosensory pyramidal neurons responding to amplitude modulations of their self‐generated electric field are organized into three parallel maps of the body surface. While previous studies have shown that these fish use parallel pathways to process stationary stimuli, whether a similar strategy is used to process motion stimuli remains unknown to this day. We recorded from electrosensory pyramidal neurons in the weakly electric fish Apteronotus leptorhynchus across parallel maps of the body surface (centromedial, centrolateral, and lateral) in response to objects moving at velocities spanning the natural range. Contrary to previous observations made with stationary stimuli, we found that all cells responded in a similar fashion to moving objects. Indeed, all cells showed a stronger directionally nonselective response when the object moved at a larger velocity. In order to explain these results, we built a mathematical model incorporating the known antagonistic center–surround receptive field organization of these neurons. We found that this simple model could quantitatively account for our experimentally observed differences seen across E and I‐type cells across all three maps. Our results thus provide strong evidence against the hypothesis that weakly electric fish use parallel neural pathways to process motion stimuli and we discuss their implications for sensory processing in general.
The vestibular end-organs encode for linear and angular head accelerations in space contributing to our internal representation of self-motion. Activation of the vestibular system with transmastoid electrical current has recently grown in popularity; however, a direct relationship between electrically evoked and mechanically evoked vestibular responses remains elusive in humans. We have developed and tested a mechanical-to-electrical vestibular stimulus conversion model incorporating physiological activation of primary vestibular afferents identified in nonhuman primates. We compared ocular torsional responses between mechanical (chair rotation) and model-derived electrical (binaural-bipolar) stimuli in separate experiments for an angular velocity step change (±10 deg/s over 1 s, ±4-mA peak amplitude; n = 10) and multisine angular velocities (±10 deg/s, 9.7 mA peak to peak, 0.05–1 Hz; n = 5), respectively. Perception of whole body rotation ( n = 18) to our step-change stimuli was also evaluated. Ocular torsional slow-phase velocity responses between stimulation types were similar (paired two one-sided tests of equivalence: multiple P < 0.002; one-sample t test: P = 0.178) and correlated (Pearson’s coefficient: multiple P < 0.001). Bootstrap analysis of perceived angular velocity likewise showed similarity in perceptual decay dynamics. These data suggest that central processing between stimuli was similar, and our vestibular stimulus conversion model with a conversion factor of ∼0.4 mA per deg/s for an angular velocity step change can generate electrical stimuli that replicates dynamic vestibular activation elicited by mechanical whole body rotations. This proposed vestibular conversion model represents an initial framework for using electrical stimuli to generate mechanically equivalent activation of primary vestibular afferents for use in biomedical applications and immersive reality technologies. NEW & NOTEWORTHY With the growing popularity of electrical vestibular stimulation in biomedical and immersive reality applications, a direct conversion model between electrical and mechanical vestibular stimuli is needed. We developed a model to generate electrical stimuli mimicking the physiological activation of vestibular afferents evoked by mechanical rotations. Ocular and perceptual responses evoked by mechanical and model-derived electrical stimuli were similar, thus providing a critical first step toward generation of electrically induced vestibular responses that have a realistic mechanical equivalent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.