Crystalline solids composed of one-dimensional channels with cross-sectional dimensions below 1 nm represent an intriguing class of materials with important potential applications. A key characteristic for certain applications is the average open channel persistence length, i.e., the ensemble average distance from a channel opening to the first obstruction. This paper introduces an NMR-based methodology to measure this quantity. The protocol is applied to polycrystalline specimens of two different dipeptide nanotubes: l-Ala-l-Val and its retro-analog l-Val-l-Ala. Persistence lengths derived from the NMR measurements are found to be comparable to the typical crystallite dimensions seen in scanning electron microscopy (SEM) images, indicating that the crystals of these AV and VA specimens are essentially hollow with practically no blockages. Applications of the method to an AV sample that has been pulverized in a mortar and pestle showed that the open channel persistence length was reduced from 50 to 6.6 μm, consistent with the crystallite sizes observed in SEM images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.