Background: Ziziphus jujuba, which is known as "Annab" or "Onnab" in Iran, is an effective compound against some cancer cell lines. The present study aimed to investigate the anti-mutagenic and anticancer effects of the aqueous extract of Z. jujuba on C643 human thyroid carcinoma cells. Methods: C643 cells were cultured in (Roswell Park memorial institute) RPMI 1640 medium (Sigma) supplemented with 10% fetal bovine serum (FBS), penicillin-streptomycin, and L-glutamine. After incubating the cultures at 37ºC with 5% CO2, MTT assay was used to determine the inhibitory effect of Z. jujuba on cell proliferation. Cell cycle progression was monitored by sub-G1 apoptosis assay using flow cytometry. Finally, anti-mutagenicity properties of the extract were evaluated using a standard reverse mutation assay (Ames test), which was performed with a histidine auxotroph strain of Salmonella typhimurium (TA100) and exposure to a carcinogenic substance (sodium azide). Results: The aqueous extract of Z. jujuba inhibited the growth of C643 cells in a concentration range of 0.5 -2 mg/mL and exhibited cytotoxic effects on C643 cells in a concentration-dependent manner (IC50: 1.671 mg/mL). The mechanism of action was the induction of apoptosis in the cells. The results of Ames test indicated a significant difference in the anti-mutagenic effects of Z. jujuba aqueous extract and controls (distilled water and sodium azide) (1.671 mg/mL) (P < 0.01). In addition, the herbal extract prevented reverted mutations and the hindrance percent was 87.97%. Conclusions: According to the results, the aqueous extract of Z. jujuba fruit exerted anti-proliferative and apoptotic effects on C643 thyroid carcinoma cell lines and may be potentially useful as an anticancer agent.
A method is presented which aims to bridge the gap between overly simplified momentum-based wake models and overly demanding finite volume models of wind turbine wake evolution. The method has been developed to allow an essentially user-defined resolution of the wake. Beyond this, all dominant field quantities are automatically resolved by the solver including convection velocity, shear stress and turbulence intensity. Two distinct methods of solution are presented which both have strengths and weaknesses, the choice of which model being fidelity and application dependent. Both methods make use of multilevel spatial integration to allow greatly improved computational efficiency. The method is here presented for 2D flow in the symmetry plane of a vertical axis wind turbine as an initial demonstration of the potential of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.