-Complete modelling of the filling process occurring in a hydrogen-fueled vehicle storage cylinder is examined. A simultaneous modelling of the flow and heat transfer within the cylinder and cylinder wall has not been considered in previous studies. Rapid filling may result to an unexpected temperature rise and breaching of the safety standards. In the present study, initially a correlation was developed based on a numerical simulation for predicting the heat transfer rate between in-cylinder flow and the cylinder inside wall. Then, a thermodynamic model was developed for predicting transient variations of temperature and pressure inside the cylinder and wall temperature during the filling. The model was applied to a type III onboard storage cylinder filling process. The numerical results are compared with previously measured values and showed good agreement. The results also show that a great portion of heat dissipation from the incylinder flow is stored in the cylinder wall. It is also found that ambient temperature during the refueling process has considerable effects on filling behavior in general and in particular on the final in-cylinder temperature and filled mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.