An experimental study was done to determine the diameter and velocity of blood drops falling on a surface by measuring the size of bloodstains they produced and counting the number of radial spines projecting from them. Bloodstains were formed by releasing drops of pig blood with a range of diameters (3.0-4.3 mm) and impact velocities (2.4-4.9 m/s), onto four different flat surfaces (glass, steel, plastic, paper) with varying roughness (0.03-2.9 µm). High-speed photography was used to record drop impact dynamics. Bloodstain diameters and the number of spines formed around the rim of stains increased with impact velocity and drop diameter. Increasing surface roughness reduced stain diameter and promoted merging of spines, diminishing their number. Equations are presented that explicitly relate drop diameter and impact velocity to measurements of stain diameter and number of spines.
Water droplets (0.55 or 1.3 mm diameter) were photographed as they impinged on a stainless steel surface. The droplet impact velocity (10–50 m s−1) and the average roughness (0.03 or 0.23 μm) of the test surfaces were varied. The stainless steel substrate was mounted on the end of a rotating arm, giving linear velocities of up to 50 m s−1. Different stages of droplet impact were photographed by synchronizing the ejection of a single droplet with the position of the rotating arm and triggering of a camera. Finger-shape perturbations were observed around the edges of spreading droplets. The maximum diameter to which a droplet spread and the number of fingers formed around it were measured. The size and number of fingers increased with impact velocity and droplet diameter. At sufficiently high velocities, the tips of these fingers detached, producing satellite droplets. By increasing surface roughness, both the number of fingers and the maximum extent of spreading were decreased. At high impact velocities the spreading liquid film became so thin that it ruptured in several places. A mathematical model, based on linear Rayleigh–Taylor instability theory, was used to predict the wavelength of the fastest growing perturbation around a spreading droplet. The corresponding wavenumber agreed reasonably well with the number of fingers around the droplet.
We photographed impact of small tin droplets on stainless steel surfaces of varying temperature and roughness. To achieve high impact velocities the test surfaces were mounted on the rim of a rotating flywheel. Substrate temperature (T s ) was varied from 120 to 220 8C and surface roughness (R a ) kept at either 0.05 or 2 mm. We kept constant the impact velocity (30 m/s) and droplet diameter (0.6 mm). To form a coating 60 droplets were deposited randomly on each stainless steel test coupon. Deposition efficiency was evaluated by dividing the mass adhering to the coupon by the mass of sixty droplets prior to impact. The maximum deposition efficiency was achieved at a substrate temperature of 160 8C. For T s , 160 8C the deposition efficiency was higher on a rough surface (R a ¼ 2 mm) than on a smooth surface (R a ¼ 0.05 mm), since splats did not adhere well to the smooth surface. For T s $ 160 8C the deposition efficiency was higher on a smooth surface (R a ¼ 0.05 mm) than on a rough surface (R a ¼ 2 mm), since splats splashed less on the smooth surface. q
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.