In this study, the performance and emission of a thermal barrier coating (TBC) engine which applied palm oil biodiesel and diesel as a fuel were evaluated. TBC was prepared by using a series of mixture consisting different blend ratio of yttria stabilized zirconia (Y2O3·ZrO2) and aluminum oxide-silicon oxide (Al2O3·SiO2) via plasma spray coating technique. The experimental results showed that mixture of TBC with 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 had an excellent nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (HC) reductions compared to other blend-coated pistons. The finding also indicated that coating mixture 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 had the highest brake thermal efficiency (BTE) and lowest of brake specific fuel consumption (BSFC) compared to all mixture coating. Reductions of HC and CO emissions were also recorded for 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 and 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 coatings. These encouraging findings had further proven the significance of TBC in enhancing the engine performance and emission reductions operated with different types of fuel.
In this study, the effect of a thermal barrier coating with yttria-stabilized zirconia (YSZ) and aluminum silicate (Al2O3·SiO2) alongside an NiCrAl bond coat on the engine performance and emission analysis was evaluated by using conventional diesel and pure palm oil biodiesel. These materials were coated on the piston alloy via plasma spray coating. The findings demonstrated that YSZ coating presented better engine performances, in terms of brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) for both fuels. The piston with YSZ coating materials achieved the highest BTE (15.94% for diesel, 14.55% for biodiesel) and lowest BSFC (498.96 g/kWh for diesel, 619.81 g/kWh for biodiesel). However, Al2O3·SiO2 coatings indicated better emission with lowest emissions of NO, CO, and CO2 for both diesel and biodiesel. For the uncoated piston, the results indicated that the engine clocked the highest torque and power, especially on diesel fuel due to the high viscosity and low caloric value, and it recorded the lowest hydrocarbon emission due to the complete combustion of fuel in the engine. Hence, it was concluded that the YSZ coating could lead to better engine performance, while Al2O3·SiO2 showed promising results in terms of greenhouse gas emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.