Mass spectrometry plays a key role in relative quantitative comparisons of proteins in order to understand their functional role in biological systems upon perturbation. In this review, we review studies that examine different aspects of isobaric labeling-based relative quantification for shotgun proteomic analysis. In particular, we focus on different types of isobaric reagents and their reaction chemistry (e.g., amine-, carbonyl-, and sulfhydryl-reactive). Various factors, such as ratio compression, reporter ion dynamic range, and others, cause an underestimation of changes in relative abundance of proteins across samples, undermining the ability of the isobaric labeling approach to be truly quantitative. These factors that affect quantification and the suggested combinations of experimental design and optimal data acquisition methods to increase the precision and accuracy of the measurements will be discussed. Finally, the extended application of isobaric labeling-based approach in hyperplexing strategy, targeted quantification, and phosphopeptide analysis are also examined.
The centrosome consists of a pair of centrioles and surrounding pericentriolar material (PCM). Many vertebrate cells also have an array of granules, termed centriolar satellites, that localize around the centrosome and are associated with centrosome and cilium function. Centriole duplication occurs once per cell cycle and is effected by a set of proteins including PLK4, CEP192, CEP152, CEP63 and CPAP. Information on the relationships between these components is limited due to the difficulty in assaying interactions in the context of the centrosome. We use proximity-dependent biotin identification (BioID) to identify proximity interactions among centriole duplication proteins. PLK4, CEP192 and CEP152 BioID identified known physically interacting proteins, and a new interaction between CEP152 and CDK5RAP2 consistent with a function of CEP152 in PCM recruitment. BioID for CEP63 and its paralog CCDC67 revealed extensive proximity interactions with centriolar satellite proteins. Focusing on these satellite proteins identified two new regulators of centriole duplication, CCDC14 and KIAA0753. Both proteins co-localize with CEP63 to satellites, bind to CEP63, and identify other satellite proteins by BioID. KIAA0753 positively regulates centriole duplication and CEP63 centrosome localization, whereas CCDC14 negatively regulates both processes. These results suggest that centriolar satellites have a previously unappreciated function in regulating centriole duplication.
The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach.
C17orf37/MGC14832, a novel gene located on human chromosome 17q12 in the ErbB-2 amplicon, is abundantly expressed in breast cancer. C17orf37 expression has been reported to positively correlate with grade and stage of cancer progression; however the functional significance of C17orf37 overexpression in cancer biology is not known. Here, we show that C17orf37 is highly expressed in prostate cancer cell lines and tumors, compared to minimal expression in normal prostate cells and tissues. Cellular localization studies by confocal and TIRF microscopy revealed predominant expression of C17orf37 in the cytosol with intense staining in the membrane of prostate cancer cells. RNA interference mediated downregulation of C17orf37 resulted in decreased migration and invasion of DU-145 prostate cancer cells, and suppressed the DNA binding activity of NF-κB transcription factor resulting in reduced expression of downstream target genes MMP-9, uPA and VEGF. Phosphorylation of PKB/Akt was also reduced upon C17orf37 downregulation, suggesting C17orf37 acts as a signaling molecule that increases invasive potential of prostate cancer cells by NF-κB mediated downstream target genes. Our data strongly suggest C17orf37 overexpression in prostate cancer functionally enhances migration and invasion of tumor cells, and is an important target for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.