Allergic asthma rates have increased steadily in developed countries, arguing for an environmental aetiology. To assess the influence of gut microbiota on experimental murine allergic asthma, we treated neonatal mice with clinical doses of two widely used antibiotics—streptomycin and vancomycin—and evaluated resulting shifts in resident flora and subsequent susceptibility to allergic asthma. Streptomycin treatment had little effect on the microbiota and on disease, whereas vancomycin reduced microbial diversity, shifted the composition of the bacterial population and enhanced disease severity. Neither antibiotic had a significant effect when administered to adult mice. Consistent with the ‘hygiene hypothesis’, our data support a neonatal, microbiota‐driven, specific increase in susceptibility to experimental murine allergic asthma.
Antibiotics are often used in the clinic to treat bacterial infections, but the effects of these drugs on microbiota composition and on intestinal immunity are poorly understood. Citrobacter rodentium was used as a model enteric pathogen to investigate the effect of microbial perturbation on intestinal barriers and susceptibility to colitis. Streptomycin and metronidazole were used to induce alterations in the composition of the microbiota prior to infection with C. rodentium. Metronidazole pretreatment increased susceptibility to C. rodentium-induced colitis over that of untreated and streptomycin-pretreated mice, 6 days postinfection. Both antibiotic treatments altered microbial composition, without affecting total numbers, but metronidazole treatment resulted in a more dramatic change, including a reduced population of Porphyromonadaceae and increased numbers of lactobacilli. Disruption of the microbiota with metronidazole, but not streptomycin treatment, resulted in an increased inflammatory tone of the intestine characterized by increased bacterial stimulation of the epithelium, altered goblet cell function, and thinning of the inner mucus layer, suggesting a weakened mucosal barrier. This reduction in mucus thickness correlates with increased attachment of C. rodentium to the intestinal epithelium, contributing to the exacerbated severity of C. rodentium-induced colitis in metronidazole-pretreated mice. These results suggest that antibiotic perturbation of the microbiota can disrupt intestinal homeostasis and the integrity of intestinal defenses, which protect against invading pathogens and intestinal inflammation.The intestinal microbiota can be thought of as an organ system, essential for nutrient acquisition, metabolism of indigestible compounds, defense against colonization by pathogens, and the development of intestinal architecture and the immune system (40,43). Compositional changes in the intestinal microbiota can lead to severe dysregulation of the physiological and immunological intestinal homeostasis, with serious adverse consequences for the host (43). A well-known case of this is antibiotic treatment, and previous studies have shown that antibiotic treatment can predispose the host to enteric infections (48). A recent investigation by Sekirov et al. showed that various doses of antibiotic treatments predispose mice to increased colonization by Salmonella enterica serovar Typhimurium and intestinal pathology (48). Additionally, Brandl et al. showed that administration of a broad-spectrum combination of metronidazole (Met), neomycin, and vancomycin promotes infection by vancomycin-resistant enterococci (9). Further, there are significant differences in microbiota compositions of inflammatory bowel disease (IBD) patients and healthy individuals, further implicating microbial factors in the initiation and perpetuation of colitis (17,19,32,46). It is unknown if such changes precede and contribute to the onset of IBD or are simply a result of IBD. Moreover,
We previously demonstrated that delivery of CpG oligodeoxynucleotide (ODN) to vaginal mucosa induced an innate mucosal antiviral state that protected against intravaginal challenge with herpes simplex virus (HSV)-2. We report that mucosal, but not systemic, delivery of ligands for Toll-like receptor (TLR)-3, but not TLR4, induced protection against genital HSV-2 challenge that was not accompanied by the local inflammation and splenomegaly seen after treatment with CpG ODN. Surprisingly, TLR4 messenger (m) RNA expression was shown to be higher than that of TLR3 or TLR9 in murine genital mucosa. Similarly, murine RAW264.7 cells were shown to express more mRNA for TLR4 than TLR3 or TLR9, yet treatment of these cells with double-stranded RNA provided greater protection than lipopolysaccharide or CpG ODN. These results indicate that TLR3 ligand induces a more potent antiviral response than TLR4 and TLR9 ligands and may be a safer means of protecting against sexually transmitted viral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.