Several developments and research methods are ongoing in drug technology and chemistry research to elicit effectiveness regarding the therapeutic activity of drugs along with photoprotection for their molecular integrity. The detrimental effect of UV light induces damaged cells and DNA, which leads to skin cancer and other phototoxic effects. The application of sunscreen shields to the skin is important, along with recommended UV filters. Avobenzone is widely used as a UVA filter for skin photoprotection in sunscreen formulations. However, keto-enol tautomerism propagates photodegradation into it, which further channelizes the phototoxic and photoirradiation effects, further limiting its use. Several approaches have been used to counter these issues, including encapsulation, antioxidants, photostabilizers, and quenchers. To seek the gold standard approach for photoprotection in photosensitive drugs, combinations of strategies have been implemented to identify effective and safe sunscreen agents. The stringent regulatory guidelines for sunscreen formulations, along with the availability of limited FDA-approved UV filters, have led many researchers to develop perfect photostabilization strategies for available photostable UV filters, such as avobenzone. From this perspective, the objective of the current review is to summarize the recent literature on drug delivery strategies implemented for the photostabilization of avobenzone that could be useful to frame industrially oriented potential strategies on a large scale to circumvent all possible photounstable issues of avobenzone.
A unique reactivity of zeolite based heterogeneous catalyst (ZSM‐5) is disclosed. ZSM‐5 in combination with NaNO2 resulted in direct access to nitriles by C−C cleavage of acetone derivatives at more substituted carbon. This cyanide free nitrile synthesis could be promising where one or more cyano‐labile electrophiles are present. Further, the catalyst has been successfully utilized for the synthesis of hydrazides from nitriles. Wide scope with high chemical yields have been achieved. Moreover, ZSM‐5 was recycled and reused several times without significant loss in its activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.