The oral microbiome is diverse in its composition due to continuous contact of oral cavity with the external environment. Temperatures, diet, pH, feeding habits are important factors that contribute in the establishment of oral microbiome. Both culture dependent and culture independent approaches have been employed in the analysis of oral microbiome. Gene-based methods like PCR amplification techniques, random amplicon cloning, PCR-RELP, T-RELP, DGGE and DNA microarray analysis have been applied to increase oral microbiome related knowledge. Studies revealed that microbes from the phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, Neisseria , TM7 predominately inhabits the oral cavity. Culture-independent molecular techniques revealed the presence of genera Megasphaera , Parvimonas and Desulfobulbus in periodontal disease. Bacteria, fungi and protozoa colonize themselves on various surfaces in oral cavity. Microbial biofilms are formed on the buccal mucosa, dorsum of the tongue, tooth surfaces and gingival sulcus. Various studies demonstrate relationship between unbalanced microflora and development of diseases like tooth caries, periodontal diseases, type 2 diabetes, circulatory system related diseases etc. Transcriptome-based remodelling of microbial metabolism in health and disease associated states has been well reported. Human diets and habitat can trigger virus activation and influence phage members of oral microbiome. As it is said, “Mouth, is the gateway to the total body wellness, thus oral microbiome influences overall health of an individual”.
A novel strain of Bacillus sphaericus JS1 producing thermostable alkaline carboxymethyl cellulase (CMCase; endo-1,4-beta-glucanase, E.C. 3.2.1.4) was isolated from soil using Horikoshi medium at pH 9.5. CMCase was purified 192-fold by (NH(4))(2)SO(4) precipitation, ion exchange and gel filtration chromatography, with an overall recovery of 23%. The CMCase is a multimeric protein with a molecular weight estimated by native-PAGE of 183 kDa. Using SDS-PAGE a single band is found at 42 kDa. This suggests presence of four homogeneous polypeptides, which would differentiate this enzyme from other known alkaline cellulases. The activity of the enzyme was significantly inhibited by bivalent cations (Fe(3+) and Hg(2+), 1.0 mM each) and activated by Co(2+), K(+) and Na(+). The purified enzyme revealed the products of carboxymethyl cellulose (CMC) hydrolysis to be CM glucose, cellobiose and cellotriose. Thermostability, pH stability, good hydrolytic capability, and stability in the presence of detergents, surfactants, chelators and commercial proteases make this enzyme potentially useful in laundry detergents.
Structure and regulation/deregulation of mTOR provides a greater insight into the action mechanism. Also, through this review, one could easily scan first and second generation inhibitors for PI3K/Akt/mTOR pathway besides targeted therapies for breast cancer and the precise role of mTOR.
Microorganisms constitute two third of the Earth's biological diversity. As many as 99% of the microorganisms present in certain environments cannot be cultured by standard techniques. Culture-independent methods are required to understand the genetic diversity, population structure and ecological roles of the majority of organisms. Metagenomics is the genomic analysis of microorganisms by direct extraction and cloning of DNA from their natural environment. Protocols have been developed to capture unexplored microbial diversity to overcome the existing barriers in estimation of diversity. New screening methods have been designed to select specific functional genes within metagenomic libraries to detect novel biocatalysts as well as bioactive molecules applicable to mankind. To study the complete gene or operon clusters, various vectors including cosmid, fosmid or bacterial artificial chromosomes are being developed. Bioinformatics tools and databases have added much to the study of microbial diversity. This review describes the various methodologies and tools developed to understand the biology of uncultured microbes including bacteria, archaea and viruses through metagenomic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.