The article is aimed at proposing the design and investigating the performance of a three-petalled flower-shaped wideband microstrip patch antenna for IoT and next-generation wireless applications. The proposed printed monopole antenna is provided with a microstrip feed line for excitation with a defected ground plane. The antenna is designed and analyzed using a finite-element-based simulator HFSS (version 15.0). The Optimetrics feature in the simulator is used for the performance optimization of the designed antenna that results in wide impedance bandwidth between 2.5 and 5.5 GHz, with add-on benefits such as less human efforts along with fast optimum results. The designed antenna holds an advantage of being low profile and reduced in size as overall diminutive dimensions of the proposed patch antenna are 0.54 λ o × 0.43 λ o × 0.021 λ o m m 3 , making it suitable for use in Wi-Max- and WLAN-enabled IoT applications. The paper is aimed at proposing an innovative optimal design aiming at the concerns about the risks in the growth of IoT and mobile computing, particularly in wireless and mobile networks. The anticipated antenna, owing to its simple and compact design, can be easily integrated into portable mobile devices, and thus, it is considered suitable for 4G and 5G and other next-generation communication applications of IoT devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.