Multimodal sentiment analysis is a developing area of research, which involves the identification of sentiments in videos. Current research considers utterances as independent entities, i.e., ignores the interdependencies and relations among the utterances of a video. In this paper, we propose a LSTM-based model that enables utterances to capture contextual information from their surroundings in the same video, thus aiding the classification process. Our method shows 5-10% performance improvement over the state of the art and high robustness to generalizability.
Emotion recognition in conversations (ERC) is a challenging task that has recently gained popularity due to its potential applications. Until now, however, there has been no largescale multimodal multi-party emotional conversational database containing more than two speakers per dialogue. To address this gap, we propose the Multimodal EmotionLines Dataset (MELD), an extension and enhancement of EmotionLines. MELD contains about 13,000 utterances from 1,433 dialogues from the TV-series Friends. Each utterance is annotated with emotion and sentiment labels, and encompasses audio, visual, and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for emotion recognition in conversations. The full dataset is available for use at
Emotion detection in conversations is a necessary step for a number of applications, including opinion mining over chat history, social media threads, debates, argumentation mining, understanding consumer feedback in live conversations, and so on. Currently systems do not treat the parties in the conversation individually by adapting to the speaker of each utterance. In this paper, we describe a new method based on recurrent neural networks that keeps track of the individual party states throughout the conversation and uses this information for emotion classification. Our model outperforms the state-of-the-art by a significant margin on two different datasets.
Emotion recognition in conversation (ERC) has received much attention, lately, from researchers due to its potential widespread applications in diverse areas, such as health-care, education, and human resources. In this paper, we present Dialogue Graph Convolutional Network (DialogueGCN), a graph neural network based approach to ERC. We leverage self and inter-speaker dependency of the interlocutors to model conversational context for emotion recognition. Through the graph network, DialogueGCN addresses context propagation issues present in the current RNN-based methods. We empirically show that this method alleviates such issues, while outperforming the current state of the art on a number of benchmark emotion classification datasets. * Corresponding author My head is aching Frustrated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.