Multi-view sequential learning is a fundamental problem in machine learning dealing with multi-view sequences. In a multi-view sequence, there exists two forms of interactions between different views: view-specific interactions and cross-view interactions. In this paper, we present a new neural architecture for multi-view sequential learning called the Memory Fusion Network (MFN) that explicitly accounts for both interactions in a neural architecture and continuously models them through time. The first component of the MFN is called the System of LSTMs, where view-specific interactions are learned in isolation through assigning an LSTM function to each view. The cross-view interactions are then identified using a special attention mechanism called the Delta-memory Attention Network (DMAN) and summarized through time with a Multi-view Gated Memory. Through extensive experimentation, MFN is compared to various proposed approaches for multi-view sequential learning on multiple publicly available benchmark datasets. MFN outperforms all the multi-view approaches. Furthermore, MFN outperforms all current state-of-the-art models, setting new state-of-the-art results for all three multi-view datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.