In this paper, an introduction and comprehensive analysis have been presented for the implementation and application of modern smart meters which include Unbundled Smart Meters (USM) and Next-Generation Open Real-Time Smart Meters (NORM). This article also contributes to methods through which USM and NORM could provide a better perspective to the already available technologies for grid-tied-inverter controlled feeding renewables to the grid. The research proposes a next-generation smart meter model with the feature of a phasor measurement unit. The meter is further integrated with a controller board that controls the power injection from the inverter to the grid based on the real-time data obtained from the smart meter. The inverter is simulated with an open-circuit fault and is controlled to provide non-oscillatory power to the grid based on an instantaneous grid power factor or phase requirement. The proposed meter has the flexibility to add additional features to control the inverter based on other grid requirements such as active and reactive power control, tariff implementation, etc. This manuscript provides the analytical aspects of the use of smart meters in efficient energy management and also addresses the need for smart technologies for grid modernization.
The paper proposes the integration of photovoltaics into distribution power system through inverter control and optimally managing the power flow based on smart energy meter data. The concept of Unbundled Smart Meter (USM) is used which to optimally integrate the inverter control logic with in the Smart meter which requires the construction of SMX (Smart Meter Extension) library. The proposed approach is adapted to make the design more robust and dynamic. State feedback controller has been designed to control the power flow to and from between the inverter and grid through USM and hence provide additional services to support grid operations. The proposed system gives the flexibility of adding numerous functionalities in the installed smart meter without the fuss of firmware change and hence integration of renewables to grid becomes more efficient as the meter’s instantaneous data are used in the dynamic control of the system. The validation of the proposed scheme is achieved by time domain simulations on MATLAB/Simulink R2018a platform along with Arduino programming on Proteus 8.1 software. These results are further assessed through Hardware experiment observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.