Empathy represents a fundamental ability that allows for the creation and cultivation of social bonds. As part of the empathic process, individuals use their own emotional state to interpret the content and intensity of other people's emotions. Therefore, the current study was designed to test two hypotheses: (1) empathy for the pain of another will result in biased emotional intensity judgment; and (2) changing one's emotion via emotion regulation will modulate these biased judgments. To test these hypotheses, in experiment one we used a modified version of a well-known task that triggers an empathic reaction We found that empathy resulted in biased emotional intensity judgment. To the best of our knowledge, this is the first demonstration of a bias in the recognition of emotional facial expressions as a function of empathy for pain. In experiment two, we replicated these findings in an independent sample, and further found that this biased emotional intensity judgment can be moderated via reappraisal. Taken together, our findings suggest that the novel task used here can be employed to further explore the relation between emotion regulation and empathy.
Emotion regulation plays a central role in empathy. Only by successfully regulating our own emotions can we reliably use them in order to interpret the content and valence of others’ emotions correctly. In an fMRI-based experiment, we show that regulating one’s emotion via reappraisal modulated biased emotional intensity ratings following an empathy for pain manipulation. Task based analysis revealed increased activity in the right IFG when painful emotions were regulated using reappraisal, whereas empathic feelings that were not regulated resulted in increased activity bilaterally in the precuneus, SMG and MFG, as well as the right parahippocampal gyrus. Functional connectivity analysis indicated that the right IFG plays a role in the regulation of empathy for pain, through its connections with regions in the empathy for pain network. Furthermore, These connections were further modulated as a function of the type of regulation used: In sum, our results suggest that accurate empathic judgment (i.e. empathy that is unbiased) relies on a complex interaction between neural regions involved in emotion regulation and regions associated with empathy for pain. Thus, demonstrating the importance of emotion regulation in the formulation of complex social systems and sheds light on the intricate network implicated in this complex process.
Excessive emotional arousal can impair individuals' ability to function and achieve their goals. This is especially true when this heightened arousal emerges from an emotional stimulus that is irrelevant to current goals and hence should be ignored (Ochsner et al., 2012). One clinical population that has yet to be investigated in the context of emotion regulation comprises patients with essential hypertension (EH). EH is defined as systolic blood pressure (BP) higher than 140 mmHg and/or diastolic BP higher than 90 mmHg (James et al., 2014). EH is the most important risk factor for cerebrovascular diseases, a major cause of death in industrialized societies (Mendis et al., 2011; Mozaffarian et al., 2016). Frequent complications of EH include atherosclerotic coronary artery disease, congestive heart failure, stroke, Alzheimer's disease and chronic kidney disease, and therefore constitutes a leading cause of severe disability and premature death (Mendis et al., 2011; James et al., 2014; Mozaffarian et al., 2016). Patients with EH exhibit "exaggerated" reactions to emotional and stressful stimuli (Jern et al., 1995; Deter et al., 2007), as well as high levels of anxiety (Liu et al., 2017). Recent evidence further suggests that patients with EH exhibit altered structure, function and connectivity within a neural network that has been associated with emotion regulation, which includes prefrontal and limbic regions (defined as the amygdala, insula, and cingulate cortex; Gianaros and Sheu, 2009; Jennings and Zanstra, 2009). Taken together, these different lines of investigation suggest possible abnormalities among patients with EH in neurocognitive inhibitory dysfunction, as related to emotion regulation, depression, anxiety, stress regulation, and emotion control processes. Yet to date very little research has examined possible deficits in cognitive control mechanisms, which may be the basis for the aforementioned emotion-related abnormalities in EH. DEFICIENT EMOTIONAL BEHAVIOR IN ESSENTIAL HYPERTENSION Research has established that the tendency to exhibit enhanced cardiovascular responses to stress and aversive situations predicts later development of EH (Matthews et al., 2004; Gianaros and Sheu, 2009; Gianaros et al., 2012). Such responses include BP elevations that are higher than what is required for adaptive motor reaction to possible stressors (Lang et al., 1998, 2000). Researchers have posited that these "exaggerated" cardiovascular responses may be caused by abnormal neural circuits related to vascular control and reactivity to
Neuroscience has become prevalent in recent years; nevertheless, its value in the examination of psychological and philosophical phenomena is still a matter of debate. The examples reviewed here suggest that neuroscientific tools can be significant in the investigation of such complex phenomena. In this article, we argue that it is important to study concepts that do not have a clear characterization and emphasize the role of neuroscience in this quest for knowledge. The data reviewed here suggest that neuroscience may (1) enrich our knowledge; (2) outline the nature of an explanation; and (3) lead to substantial empirical and theoretical discoveries. To that end, we review work on hedonia and eudaimonia in the fields of neuroscience, psychology, and philosophy. These studies demonstrate the importance of neuroscientific tools in the investigation of phenomena that are difficult to define using other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.