Bacterial biofilm formation can be induced by antimicrobial and DNA damage agents. These agents trigger the SOS response, in which SOS sensor RecA stimulates auto-cleavage of repressor LexA. These observations lead to a hypothesis of a connection between stress-inducible biofilm formation and the RecA-LexA interplay. To test this hypothesis, three biofilm assays were conducted, viz. the standard 96-well assay, confocal laser scanning microscopy, and the newly developed biofilm-on-paper assay. It was found that biofilm stimulation by the DNA replication inhibitor hydroxyurea was dependent on RecA and appeared repressed by the non-cleavable LexA of Pseudomonas aeruginosa. Surprisingly, deletion of lexA led to reduction of both normal and stress-inducible biofilm formation, suggesting that the wild-type LexA contributes to biofilm formation. The decreases was not the result of poor growth of the mutants. These results suggest SOS involvement in hydroxyurea-inducible biofilm formation. In addition, with the paper biofilm assay, it was found that degradation of the biofilm matrix DNA by DNase I appeared to render the biofilms susceptible to the replication inhibitor. The puzzling questions concerning the roles of LexA in DNA release in the biofilm context are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.