This article handles the challenging problem of identifying the unknown parameters of solar cell three models on one hand and of photovoltaic module three models on the other hand. This challenge serves as the basis for fault detection, control, and modelling of PV systems. An accurate model of PV is essential for the simulation research of PV systems, where it has a significant role in the dynamic study of these systems. The mathematical models of the PV cell and module have nonlinear I-V and P-V characteristics with many undefined parameters. In this paper, this identification problem is solved as an optimization problem based on metaheuristic optimization algorithms. These algorithms use root mean square error (RMSE) between the calculated and the measured current as an objective function. A new metaheuristic amalgamation algorithm, namely biogeography-based teaching learning-based optimization (BB-TLBO) is proposed. This algorithm is a hybridization of two algorithms, the first one is called BBO (biogeography-based optimization) and the second is TLBO (teaching learning-based optimization). The BB-TLBO is proposed to identify the unknown parameters of one, two and three-diode models of the RTC France silicon solar cell and of the commercial photovoltaic solar module monocrystalline STM6-40/36, taking into account the performance indices: high precision, more reliability, short execution time and high convergence speed. This identification is carried out using experimental data from the RTC France silicon solar cell and the STM6-40/36 photovoltaic module. The efficiency of BB-TLBO is checked by comparing its identification results with its own single algorithm BBO, TLBO and newly introduced hybrid algorithms such as DOLADE, LAPSO and others. The results reveal that the suggested approach surpasses all compared algorithms in terms of RMSE (RMSE min, RMSE mean and RMSE max), standard deviation of RMSE values (STD), CPU (execution time), and convergence speed.
Solar systems connected to the grid are crucial in addressing the global energy crisis and meeting rising energy demand. The efficiency of these systems is totally impacted by varying weather conditions such as changes in irradiance and temperature throughout the day. Additionally, partial shading (PS) adds to the complexity of the nonlinear characteristics of photovoltaic (PV) systems, leading to significant power loss. To address this issue, maximum power point tracking (MPPT) algorithms have become an essential component in PV systems to ensure optimal power extraction. This paper introduces a new MPPT control technique based on a novel reptile search optimization algorithm (RSA). The effectiveness of the proposed RSA method is evaluated under different weather conditions with varying irradiance and partial shading. The results of the RSA algorithm are compared to other existing bio-inspired algorithms and show superior performance with an average efficiency of 99.91%, faster dynamic response of 50 ms, and less than 20 watts of oscillation. The RSA-MPPT based technique provides higher efficiency, faster settling time, and minimal oscillation around the maximum power point (MPP), making it a reliable solution for effective solar power harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.