Traffic forecasting is a research topic debated by several researchers affiliated to a range of disciplines. It is becoming increasingly important given the growth of motorized vehicles on the one hand, and the scarcity of lands for new transportation infrastructure on the other. Indeed, in the context of smart cities and with the uninterrupted increase of the number of vehicles, road congestion is taking up an important place in research. In this context, the ability to provide highly accurate traffic forecasts is of fundamental importance to manage traffic, especially in the context of smart cities. This work is in line with this perspective and aims to solve this problem. The proposed methodology plans to forecast day-by-day traffic stream using three different models: the Multilayer Perceptron of Artificial Neural Networks (ANN), the Seasonal Autoregressive Integrated Moving Average (SARIMA) and the Support Machine Regression (SMOreg). Using those three models, the forecast is realized based on a history of real traffic data recorded on a road section over 42 months. Besides, a recognized traffic manager in Morocco provides this dataset; the performance is then tested based on predefined criteria. From the experiment results, it is clear that the proposed ANN model achieves highest prediction accuracy with the lowest absolute relative error of 0.57%.
The world is changing quite rapidly while increasingly tuning into digitalization. However, it is important to note that data science is what most technology is evolving around and data is definitely the future of everything. For industries, adopting a “data science approach” is no longer an option, it becomes an obligation in order to enhance their business rather than survive. This paper offers a roadmap for anyone interested in this research field or getting started with “machine learning” learning while enabling the reader to easily comprehend the key concepts behind. Indeed, it examines the benefits of automated machine learning systems, starting with defining machine learning vocabulary and basic concepts. Then, explaining how to, concretely, build up a machine learning model by highlighting the challenges related to data and algorithms. Finally, exposing a summary of two studies applying machine learning in two different fields, namely transportation for road traffic forecasting and supply chain management for demand prediction where the predictive performance of various models iscompared based on different metrics.
To ensure patient safety, the healthcare service must be of a high quality, safe and effective. This work aims to propose integrated approaches to risk management for a hospital system. To improve patient's safety, we should develop methods where different aspects of risk and type of information are taken into consideration. The first approach is designed for a context where data about risk events are available. It uses Bayesian networks for quantitative risk analysis in the hospital. Bayesian networks provide a framework for presenting causal relationships and enable probabilistic inference among a set of variables. The methodology is used to analyze the patient's safety risk in the operating room, which is a high risk area for adverse event. The second approach uses the fuzzy Bayesian network to model and analyze risk. Fuzzy logic allows using the expert's opinions when quantitative data are lacking and only qualitative or vague statements can be made. This approach provides an actionable model that accurately supports human cognition using linguistic variables. A case study of the patient's safety risk in the operating room is used to illustrate the application of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.