Abstract-The diagnosis of voice diseases through the invasive medical techniques is an efficient way but it is often uncomfortable for patients, therefore, the automatic speech recognition methods have attracted more and more interest recent years and have known a real success in the identification of voice impairments. In this context, this paper proposes a reliable algorithm for voice disorders identification based on two classification algorithms; the Artificial Neural Networks (ANN) and the Support Vector Machine (SVM). The feature extraction task is performed by the Mel Frequency Cepstral Coefficients (MFCC) and their first and second derivatives. In addition, the Linear Discriminant Analysis (LDA) is proposed as feature selection procedure in order to enhance the discriminative ability of the algorithm and minimize its complexity. The proposed voice disorders identification system is evaluated based on a widespread performance measures such as the accuracy, sensitivity, specificity, precision and Area Under Curve (AUC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.