Medical Body Area Network (MBAN) has emerged as a promising solution for monitoring patient activities and actions, and supports a lot of healthcare applications. A MBAN includes a set of sensor nodes deployed such, they can be located on, in, or around the patient body. They are used to monitor physiological signs, which are transmitted then to medical servers without hampering the patient activities. Security is one of the main challenging issues in MBANs since the data nature is highly sensitive. In order to ensure the reliable gathering of patient critical information, it is vital to provide authentication to prevent an attacker from impersonating legitimate sensor nodes. In this paper, we propose a patient body motion based authentication solution. The routine activities, as walking or running, are characterized through a generic model allowing to identify the patient sensor nodes. Through the security analysis, we show its robustness against the well known attacks. In addition, we develop an analytical model to measure the impact of physical and logical attacks on the proposed solution with comparison to the existing protocols. We also evaluate the proposed solution through simulations with respect of important criteria, namely the transmission overhead, response time and energy consumption. The proposed solution demonstrates the best results in performance with comparison to the existing protocols. Furthermore, we have developed a prototype of the proposed solution, where it demonstrates promising results in terms of true acceptation and false rejection.
Mobile Wireless Sensor Network (MWSN) is a set of interconnected mobile sensor devices forming a dynamic network without a fixed administration. MWSN is used in various domains, such as disaster detection, medical systems, military applications, vehicular communications, and in other sensitive applications. Compared to the classical sensor networks, MWSNs involve an additional constraint consisting of the topology change frequency caused by the mobility of sensor devices. This influences highly the energy consumption and consequently the network reliability. In this paper, we take in charge this important issue and we contribute by the proposition of an efficient and energy-aware routing protocol. The proposed protocol operates for both request and event oriented MWSN applications. It introduces the sensor device mobility history in order to build-up stable routing paths, and incorporates a novel technique of dissimulation in order to exchange the mobility control messages without overhead. We have evaluated the performances of the proposed protocol through simulations, in which it provides effective results in terms of energy consumption and load-balancing.
Wireless Body Area Networks (WBANs) become very attractive in the research community area and are getting growing interest because of their suitability for medical applications. They are designed such, they can be located on, in or around the patient body and are used to monitor medical signs and forward them to medical servers. Proficient energy and Quality of Service (QoS) are the main requirements for a dependable design in a such networks. In this article, the authors propose a reliable and power efficient routing approach for healthcare systems with the aim to balance the trade-off between the QoS requirements and the energy consumption. Their approach operates in an efficient computation way, where the sink device manages the routing paths avoiding the sensors to be involved in computation and consequently on the energy consumption. They conducted intensive simulations and the obtained results show that Their approach offers effective results in terms of transmission load, response time and energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.