Transient receptor potential melastatin 3 (TRPM3) is a heat-activated ion channel in primary sensory neurons of the dorsal root ganglia (DRGs). Pharmacological and genetic studies implicated TRPM3 in various pain modalities, but TRPM3 inhibitors were not validated in TRPM3 2/2 mice. Here we tested two inhibitors of TRPM3 in male and female wild-type and TRPM3 2/2 mice in nerve injury-induced neuropathic pain. We found that intraperitoneal injection of either isosakuranetin or primidone reduced heat hypersensitivity induced by chronic constriction injury (CCI) of the sciatic nerve in wild-type, but not in TRPM3 2/2 mice. Primidone was also effective when injected locally in the hindpaw or intrathecally. Consistently, intrathecal injection of the TRPM3 agonist CIM0216 reduced paw withdrawal latency to radiant heat in wild-type, but not in TRPM3 2/2 mice. Intraperitoneal injection of 2 mg/kg, but not 0.5 mg/kg isosakuranetin, inhibited cold and mechanical hypersensitivity in CCI, both in wild-type and TRPM3 2/2 mice, indicating a dose-dependent off-target effect. Primidone had no effect on cold sensitivity, and only a marginal effect on mechanical hypersensitivity. Genetic deletion or inhibitors of TRPM3 reduced the increase in the levels of the early genes c-Fos and pERK in the spinal cord and DRGs in CCI mice, suggesting spontaneous activity of the channel. Intraperitoneal isosakuranetin also inhibited spontaneous pain related behavior in CCI in the conditioned place preference assay, and this effect was eliminated in TRPM3 2/2 mice. Overall, our data indicate a role of TRPM3 in heat hypersensitivity and in spontaneous pain after nerve injury.
Considerable efforts have been devoted to control and maintain the sustained release of proteins. In this experiment, we used bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) as a model protein to explore the potential utility of a chitosan and glycerol phosphate disodium salt (GP) hydrogel as a protein drug depot. The mixing of chitosan and GP solutions (0, 10, 20 and 30 wt%) formed a liquid at room temperature. At 37 °C, however, the chitosan/GP solutions formed hydrogels through an electrostatic crosslinking process. This electrostatic interaction between the chitosan, cationic amine group, and GP, anionic phosphate group, was confirmed by the changes of zeta potentials and particle sizes of this solution. The electrostatic interaction depended both on the GP ratios in chitosan and the incubation time of chitosan/GP solutions. Furthermore, BSA-FITC-loaded chitosan/GP hydrogels were examined for their ability as potential depots for the BSA drugs. Hence, when observed, the BSA-FITC-loaded chitosan/GP hydrogels showed an in vitro sustained release profile of BSA up to 14 days. Collectively, our results show that the chitosan/GP hydrogels described here, can serve as depots for BSA drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.