The Rosetta software suite for macromolecular modeling, docking, and design is widely used in pharmaceutical, industrial, academic, non-profit, and government laboratories. Despite its broad modeling capabilities, Rosetta remains consistently among leading software suites when compared to other methods created for highly specialized protein modeling and design tasks. Developed for over two decades by a global community of over 60 laboratories, Rosetta has undergone multiple refactorings, and now comprises over three million lines of code. Here we discuss methods developed in the last five years in Rosetta, involving the latest protocols for structure prediction; protein-protein and protein-small molecule docking; protein structure and interface design; loop modeling; the incorporation of various types of experimental data; modeling of peptides, antibodies and proteins in the immune system, nucleic acids, non-standard chemistries, carbohydrates, and membrane proteins. We briefly discuss improvements to the energy function, user interfaces, and usability of the software. Rosetta is available at www.rosettacommons.org.
Peptides have recently attracted much attention as promising drug candidates. Rational design of peptide-derived therapeutics usually requires structural characterization of the underlying protein-peptide interaction. Given that experimental characterization can be difficult, reliable computational tools are needed. In recent years, a variety of approaches have been developed for 'protein-peptide docking', that is, predicting the structure of the protein-peptide complex, starting from the protein structure and the peptide sequence, including variable degrees of information about the peptide binding site and/or conformation. In this review, we provide an overview of protein-peptide docking methods and outline their capabilities, limitations, and applications in structure-based drug design. Key challenges are also briefly discussed, such as modeling of large-scale conformational changes upon binding, scoring of predicted models, and optimal inclusion of varied types of experimental data and theoretical predictions into an integrative modeling process.
Peptide-protein interactions contribute a significant fraction of the protein-protein interactome. Accurate modeling of these interactions is challenging due to the vast conformational space associated with interactions of highly flexible peptides with large receptor surfaces. To address this challenge we developed a fragment based high-resolution peptide-protein docking protocol. By streamlining the Rosetta fragment picker for accurate peptide fragment ensemble generation, the PIPER docking algorithm for exhaustive fragment-receptor rigid-body docking and Rosetta FlexPepDock for flexible full-atom refinement of PIPER docked models, we successfully addressed the challenge of accurate and efficient global peptide-protein docking at high-resolution with remarkable accuracy, as validated on a small but representative set of peptide-protein complex structures well resolved by X-ray crystallography. Our approach opens up the way to high-resolution modeling of many more peptide-protein interactions and to the detailed study of peptide-protein association in general. PIPER-FlexPepDock is freely available to the academic community as a server at http://piperfpd.furmanlab.cs.huji.ac.il.
SummaryWe present an approach for the efficient docking of peptide motifs to their free receptor structures. Using a motif based search, we can retrieve structural fragments from the Protein Data Bank (PDB) that are very similar to the peptide’s final, bound conformation. We use a Fast Fourier Transform (FFT) based docking method to quickly perform global rigid body docking of these fragments to the receptor. According to CAPRI peptide docking criteria, an acceptable conformation can often be found among the top-ranking predictions.Availability and ImplementationThe method is available as part of the protein-protein docking server ClusPro at https://peptidock.cluspro.org/nousername.php.Supplementary information Supplementary data are available at Bioinformatics online.
Summary HDAC8 is a member of the family of Histone Deacetylases (HDAC) that catalyze the deacetylation of acetyl lysine residues within histone and non-histone proteins. The recent identification of novel non-histone HDAC8 substrates such as SMC3, ERRα and ARID1A indicates a complex functionality of this enzyme in cellular homeostasis. To discover additional HDAC8 substrates we developed a comprehensive, structure-based approach based on Rosetta FlexPepBind, a protocol that evaluates peptide-binding ability to a receptor from structural models of this interaction. Here we adapt this protocol to identify HDAC8 substrates using peptide sequences extracted from proteins with known acetylated sites. The many new in vitro HDAC8 peptide substrates identified in this study suggest that numerous cellular proteins are HDAC8 substrates, thus expanding our view of the acetylome and its regulation by HDAC8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.