Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.
Prior to the innovation of information communication technologies (ICT), social interactions evolved within small cultural boundaries such as geo spatial locations. The recent developments of communication technologies have considerably transcended the temporal and spatial limitations of traditional communications. These social technologies have created a revolution in user-generated information, online human networks, and rich human behavior-related data. However, the misuse of social technologies such as social media (SM) platforms, has introduced a new form of aggression and violence that occurs exclusively online. A new means of demonstrating aggressive behavior in SM websites are highlighted in this paper. The motivations for the construction of prediction models to fight aggressive behavior in SM are also outlined. We comprehensively review cyberbullying prediction models and identify the main issues related to the construction of cyberbullying prediction models in SM. This paper provides insights on the overall process for cyberbullying detection and most importantly overviews the methodology. Though data collection and feature engineering process has been elaborated, yet most of the emphasis is on feature selection algorithms and then using various machine learning algorithms for prediction of cyberbullying behaviors. Finally, the issues and challenges have been highlighted as well, which present new research directions for researchers to explore.INDEX TERMS Big data, cyberbullying, cybercrime, human aggressive behavior, machine learning, online social network, social media, text classification.
Recent research in underwater wireless sensor networks (UWSNs) has gained the attention of researchers in academia and industry for a number of applications. They include disaster and earthquake prediction, water quality and environment monitoring, leakage and mine detection, military surveillance and underwater navigation. However, the aquatic medium is associated with a number of limitations and challenges: long multipath delay, high interference and noise, harsh environment, low bandwidth and limited battery life of the sensor nodes. These challenges demand research techniques and strategies to be overcome in an efficient and effective fashion. The design of routing protocols for UWSNs is one of the promising solutions to cope with these challenges. This paper presents a survey of the routing protocols for UWSNs. For the ease of description, the addressed routing protocols are classified into two groups: localization-based and localization-free protocols. These groups are further subdivided according to the problems they address or the major parameters they consider during routing. Unlike the existing surveys, this survey considers only the latest and state-of-the-art routing protocols. In addition, every protocol is described in terms of its routing strategy and the problem it addresses and solves. The merit(s) of each protocol is (are) highlighted along with the cost. A description of the protocols in this fashion has a number of advantages for researchers, as compared to the existing surveys. Firstly, the description of the routing strategy of each protocol makes its routing operation easily understandable. Secondly, the demerit(s) of a protocol provides (provide) insight into overcoming its flaw(s) in future investigation. This, in turn, leads to the foundation of new protocols that are more intelligent, robust and efficient with respect to the desired parameters. Thirdly, a protocol can be selected for the appropriate application based on its described merit(s). Finally, open challenges and research directions are presented for future investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.