The use of an activating agent in chemical activation of activated carbon (AC) production is very important as it will help to open the pore structure of AC as adsorbents and could enhance its performance for adsorption capacity. In this study, a pyridinium-based ionic liquid (IL), 1-butylpyridinium bis(trifluoromethylsulfonyl) imide, [C4Py][Tf2N] has been synthesized by using anion exchange reaction and was characterized using few analyses such as 1H-NMR, 13C-NMR and FTIR. Low-cost AC was synthesized by chemical activation process in which rubber seed shell (RSS) and ionic liquid [C4Py][Tf2N] were employed as the precursor and activating agent, respectively. AC has been prepared with different IL concentration (1% and 10%) at 500°C and 800°C for 2 hours. Sample AC2 shows the highest SBET and VT which are 392.8927 m2/g and 0.2059 cm3/g respectively. The surface morphology of synthesized AC can be clearly seen through FESEM analysis. A high concentration of IL in sample AC10 contributed to blockage of pores by the IL. On the other hand, the performance of synthesized AC for CO2 adsorption capacity also studied by using static volumetric technique at 1 bar and 25°C. Sample AC2 contributed the highest CO2 uptakes which is 50.783 cm3/g. This current work shows that the use of low concentration IL as an activating agent has the potential to produce porous AC, which offers low-cost, green technology as well as promising application towards CO2 capture.
Lignocellulosic biomass containing cellulose, hemicelluloses and lignin is significantly analyzed via methods from infrared to microscopy. These methods help researchers to explore the organic or inorganic functional groups and physical surface impacts microscopically on the particles of the pretreated biomass. Some concerns arise in understanding the data results. An investigation with the presence of ionic liquids on Leucaena Leucocephala (Petai Belalang), Acacia Auriculiformis and Melastoma Malabathricum (Senduduk) are reported via the results of Fourier Transform Infrared Spectrum (FTIR) and Scanning Electron Microscopy (SEM). The model ionic liquids as green solvents used are 1-Ethyl-3-methylimidazolium Acetate (EMIMAc) and 1-Ethyl-3-methylimidazolium Chloride (EMIMCl). This work is very essential to sustain preliminary reliable understanding on the chemical and physical effects on lignocellulosic biomass during pretreatment with solvents.
In this study, rubber seed shell was used for the production of activated carbon by chemical activation using an ionic liquid, [C4Py][Tf2N] as an activating agent. Sample RSS-IL 800 shows the highest specific surface area of 393.99 m2/g, a total pore volume of 0.206 cm3/g, and a micropore volume of 0.172 cm3/g. The performance of AC samples as an adsorbent for CO2 was also studied using a static volumetric technique evaluated at a temperature of 25 °C and 1 bar pressure. The CO2 adsorption capacity for sample RSS-IL 800 was 2.436 mmol/g, comparable with reported data from the previous study. Results also show that the CO2 adsorption capacity decreased at a higher temperature between 50 and 100 °C and increased at elevated pressure due to its exothermic behavior. The Langmuir model fits the adsorption data well, and the isosteric heat of adsorption proved that the physisorption process and exothermic behavior occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.