Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes. The reduction of the basic chromosome number from 12 to 7 in the Triticeae has taken place by a process during which an entire chromosome is inserted by its telomeres into a break in the centromeric region of another chromosome. The original centromere-telomere polarity of the chromosome arms is maintained in the new chromosome. An intrachromosomal telomeretelomere fusion resulting in a pericentric translocation of a chromosome segment or an entire arm accompanied or preceded the chromosome insertion in some instances. Insertional dysploidy has been recorded in three grass subfamilies and appears to be the dominant mechanism of basic chromosome number reduction in grasses. A total of 64% and 66% of Ae. tauschii genes were syntenic with sorghum and rice genes, respectively. Synteny was reduced in the vicinity of the termini of modern Ae. tauschii chromosomes but not in the vicinity of the ancient termini embedded in the Ae. tauschii chromosomes, suggesting that the dependence of synteny erosion on gene location along the centromere-telomere axis either evolved recently in the Triticeae phylogenetic lineage or its evolution was recently accelerated.dysploidy ͉ linkage map ͉ rice ͉ sorghum ͉ wheat
The small RNA transcriptomes of bread wheat and its emerging model Brachypodium distachyon were obtained by using deep sequencing technology. Small RNA compositions were analyzed in these two species. In addition to 70 conserved microRNAs (miRNAs) from 25 families, 23 novel wheat miRNAs were identified. For Brachypodium, 12 putative miRNAs were predicted from a limited number of expressed sequence tags, of which one was a potential novel miRNA. Also, 94 conserved miRNAs from 28 families were identified in this species. Expression validation was performed for several novel wheat miRNAs. RNA ligase-mediated 5' rapid amplification of complementary DNA ends experiments demonstrated their capability to cleave predicted target genes including three disease-resistant gene analogs. Differential expression of miRNAs was observed between Brachypodium vegetative and reproductive tissues, suggesting their different roles at the two growth stages. Our work significantly increases the novel miRNA numbers in wheat and provides the first set of small RNAs in B. distachyon.
Background Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing.Methodology/Principal FindingsThe complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons.ConclusionThe chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny studies within Artemisia species and also within the Asteraceae family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.